--- license: cc-by-nc-4.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-IEMOCAP_4 results: [] --- # videomae-base-finetuned-IEMOCAP_4 This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3971 - Accuracy: 0.2747 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 4490 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3364 | 0.1 | 450 | 1.4142 | 0.2882 | | 1.3951 | 1.1 | 900 | 1.3692 | 0.3058 | | 1.2918 | 2.1 | 1350 | 1.3544 | 0.3357 | | 1.2283 | 3.1 | 1800 | 1.3673 | 0.3298 | | 1.2638 | 4.1 | 2250 | 1.3652 | 0.3404 | | 1.2674 | 5.1 | 2700 | 1.3265 | 0.3538 | | 1.2737 | 6.1 | 3150 | 1.3092 | 0.3802 | | 1.1625 | 7.1 | 3600 | 1.2969 | 0.3884 | | 1.35 | 8.1 | 4050 | 1.3067 | 0.3726 | | 1.1373 | 9.1 | 4490 | 1.2835 | 0.3972 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.0 - Tokenizers 0.13.3