callhomeCompleto / README.md
mirari's picture
End of training
9c0f1ea verified
|
raw
history blame
2.28 kB
metadata
library_name: transformers
language:
  - spa
license: mit
base_model: diarizers-community/speaker-segmentation-fine-tuned-callhome-spa
tags:
  - speaker-diarization
  - speaker-segmentation
  - generated_from_trainer
datasets:
  - diarizers-community/callhome
model-index:
  - name: speaker-segmentation-fine-tuned-callhome-spa
    results: []

speaker-segmentation-fine-tuned-callhome-spa

This model is a fine-tuned version of diarizers-community/speaker-segmentation-fine-tuned-callhome-spa on the diarizers-community/callhome dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3513
  • Der: 0.2029
  • False Alarm: 0.1480
  • Missed Detection: 0.0549
  • Confusion: 0.0000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Der False Alarm Missed Detection Confusion
0.3117 1.0 281 0.3448 0.2096 0.1526 0.0545 0.0024
0.2973 2.0 562 0.3260 0.1961 0.1359 0.0601 0.0001
0.2937 3.0 843 0.3413 0.2027 0.1468 0.0555 0.0004
0.2953 4.0 1124 0.3466 0.2023 0.1467 0.0555 0.0000
0.2725 5.0 1405 0.3513 0.2029 0.1480 0.0549 0.0000

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.1
  • Datasets 3.0.1
  • Tokenizers 0.20.0