--- library_name: transformers language: - spa license: mit base_model: diarizers-community/speaker-segmentation-fine-tuned-callhome-spa tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - diarizers-community/callhome model-index: - name: speaker-segmentation-fine-tuned-callhome-spa results: [] --- # speaker-segmentation-fine-tuned-callhome-spa This model is a fine-tuned version of [diarizers-community/speaker-segmentation-fine-tuned-callhome-spa](https://huggingface.co/diarizers-community/speaker-segmentation-fine-tuned-callhome-spa) on the diarizers-community/callhome dataset. It achieves the following results on the evaluation set: - Loss: 0.3513 - Der: 0.2029 - False Alarm: 0.1480 - Missed Detection: 0.0549 - Confusion: 0.0000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.3117 | 1.0 | 281 | 0.3448 | 0.2096 | 0.1526 | 0.0545 | 0.0024 | | 0.2973 | 2.0 | 562 | 0.3260 | 0.1961 | 0.1359 | 0.0601 | 0.0001 | | 0.2937 | 3.0 | 843 | 0.3413 | 0.2027 | 0.1468 | 0.0555 | 0.0004 | | 0.2953 | 4.0 | 1124 | 0.3466 | 0.2023 | 0.1467 | 0.0555 | 0.0000 | | 0.2725 | 5.0 | 1405 | 0.3513 | 0.2029 | 0.1480 | 0.0549 | 0.0000 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1 - Datasets 3.0.1 - Tokenizers 0.20.0