File size: 3,706 Bytes
36642a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c7e894
 
36642a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c7e894
36642a6
 
 
 
 
4c7e894
36642a6
 
 
 
 
4c7e894
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36642a6
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: kids_phoneme_sm_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# kids_phoneme_sm_model

This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6936
- Cer: 0.2531

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Cer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 3.2437        | 0.74  | 500   | 4.1235          | 1.0    |
| 2.8562        | 1.48  | 1000  | 3.5824          | 1.0    |
| 2.7606        | 2.22  | 1500  | 3.2239          | 1.0    |
| 2.0885        | 2.96  | 2000  | 1.1613          | 0.8147 |
| 1.0295        | 3.7   | 2500  | 0.7703          | 0.5125 |
| 0.796         | 4.44  | 3000  | 0.6539          | 0.4420 |
| 0.6484        | 5.19  | 3500  | 0.6259          | 0.3937 |
| 0.6099        | 5.93  | 4000  | 0.5749          | 0.3887 |
| 0.5772        | 6.67  | 4500  | 0.6031          | 0.3637 |
| 0.5158        | 7.41  | 5000  | 0.5978          | 0.3518 |
| 0.4923        | 8.15  | 5500  | 0.5621          | 0.3364 |
| 0.4679        | 8.89  | 6000  | 0.5371          | 0.3396 |
| 0.4385        | 9.63  | 6500  | 0.5804          | 0.3213 |
| 0.4818        | 10.37 | 7000  | 0.5469          | 0.3223 |
| 0.3797        | 11.11 | 7500  | 0.5789          | 0.3118 |
| 0.3669        | 11.85 | 8000  | 0.5733          | 0.2986 |
| 0.3777        | 12.59 | 8500  | 0.6053          | 0.3004 |
| 0.3613        | 13.33 | 9000  | 0.6061          | 0.2895 |
| 0.3454        | 14.07 | 9500  | 0.6072          | 0.2740 |
| 0.3532        | 14.81 | 10000 | 0.6119          | 0.2872 |
| 0.3087        | 15.56 | 10500 | 0.6020          | 0.2849 |
| 0.3277        | 16.3  | 11000 | 0.6397          | 0.2745 |
| 0.2978        | 17.04 | 11500 | 0.6216          | 0.2745 |
| 0.2939        | 17.78 | 12000 | 0.6377          | 0.2690 |
| 0.2675        | 18.52 | 12500 | 0.6752          | 0.2681 |
| 0.2873        | 19.26 | 13000 | 0.6677          | 0.2767 |
| 0.2779        | 20.0  | 13500 | 0.6748          | 0.2717 |
| 0.28          | 20.74 | 14000 | 0.6771          | 0.2645 |
| 0.2688        | 21.48 | 14500 | 0.6618          | 0.2604 |
| 0.2234        | 22.22 | 15000 | 0.6791          | 0.2613 |
| 0.2464        | 22.96 | 15500 | 0.6665          | 0.2626 |
| 0.2254        | 23.7  | 16000 | 0.7028          | 0.2572 |
| 0.2132        | 24.44 | 16500 | 0.6985          | 0.2567 |
| 0.2424        | 25.19 | 17000 | 0.6731          | 0.2590 |
| 0.2447        | 25.93 | 17500 | 0.6780          | 0.2544 |
| 0.2209        | 26.67 | 18000 | 0.6729          | 0.2567 |
| 0.2102        | 27.41 | 18500 | 0.6844          | 0.2563 |
| 0.2185        | 28.15 | 19000 | 0.6922          | 0.2585 |
| 0.2294        | 28.89 | 19500 | 0.6940          | 0.2563 |
| 0.2208        | 29.63 | 20000 | 0.6936          | 0.2531 |


### Framework versions

- Transformers 4.30.1
- Pytorch 2.0.0
- Datasets 2.12.0
- Tokenizers 0.13.3