Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,81 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: mit
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
datasets:
|
3 |
+
- glue
|
4 |
+
model-index:
|
5 |
+
- name: contriever-mnli
|
6 |
+
results: []
|
7 |
+
pipeline_tag: zero-shot-classification
|
8 |
+
language:
|
9 |
+
- en
|
10 |
license: mit
|
11 |
---
|
12 |
+
|
13 |
+
# contriever-mnli
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [facebook/contriever](https://huggingface.co/facebook/contriever) on the glue dataset.
|
16 |
+
|
17 |
+
## Model description
|
18 |
+
|
19 |
+
[Unsupervised Dense Information Retrieval with Contrastive Learning](https://arxiv.org/abs/2112.09118).
|
20 |
+
Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand Joulin, Edouard Grave, arXiv 2021
|
21 |
+
|
22 |
+
## How to use the model
|
23 |
+
|
24 |
+
The model can be loaded with the `zero-shot-classification` pipeline like so:
|
25 |
+
|
26 |
+
```python
|
27 |
+
from transformers import pipeline
|
28 |
+
classifier = pipeline("zero-shot-classification",
|
29 |
+
model="mjwong/contriever-mnli")
|
30 |
+
```
|
31 |
+
|
32 |
+
You can then use this pipeline to classify sequences into any of the class names you specify.
|
33 |
+
|
34 |
+
```python
|
35 |
+
sequence_to_classify = "one day I will see the world"
|
36 |
+
candidate_labels = ['travel', 'cooking', 'dancing']
|
37 |
+
classifier(sequence_to_classify, candidate_labels)
|
38 |
+
#{'sequence': 'one day I will see the world',
|
39 |
+
# 'labels': ['travel', 'cooking', 'dancing'],
|
40 |
+
# 'scores': [0.7728410363197327, 0.13207288086414337, 0.09508601576089859]}
|
41 |
+
```
|
42 |
+
|
43 |
+
If more than one candidate label can be correct, pass `multi_class=True` to calculate each class independently:
|
44 |
+
|
45 |
+
```python
|
46 |
+
candidate_labels = ['travel', 'cooking', 'dancing', 'exploration']
|
47 |
+
classifier(sequence_to_classify, candidate_labels, multi_class=True)
|
48 |
+
#{'sequence': 'one day I will see the world',
|
49 |
+
# 'labels': ['exploration', 'travel', 'cooking', 'dancing'],
|
50 |
+
# 'scores': [0.9920766353607178,
|
51 |
+
# 0.7247188091278076,
|
52 |
+
# 0.08411424607038498,
|
53 |
+
3 0.03875880688428879]}
|
54 |
+
```
|
55 |
+
|
56 |
+
### Eval results
|
57 |
+
The model was evaluated using the dev sets for MultiNLI and test sets for ANLI. The metric used is accuracy.
|
58 |
+
|
59 |
+
|Datasets|mnli_dev_m|mnli_dev_mm|anli_test_r1|anli_test_r2|anli_test_r3|
|
60 |
+
| :---: | :---: | :---: | :---: | :---: | :---: |
|
61 |
+
|[contriever-mnli](https://huggingface.co/mjwong/contriever-mnli)|0.821|0.822|0.247|0.281|0.312|
|
62 |
+
|[contriever-msmarco-mnli](https://huggingface.co/mjwong/contriever-msmarco-mnli)|0.820|0.819|0.244|0.296|0.306|
|
63 |
+
|
64 |
+
### Training hyperparameters
|
65 |
+
|
66 |
+
The following hyperparameters were used during training:
|
67 |
+
|
68 |
+
- learning_rate: 2e-05
|
69 |
+
- train_batch_size: 16
|
70 |
+
- eval_batch_size: 16
|
71 |
+
- seed: 42
|
72 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
73 |
+
- lr_scheduler_type: linear
|
74 |
+
- lr_scheduler_warmup_ratio: 0.1
|
75 |
+
- num_epochs: 5
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
- Transformers 4.28.1
|
79 |
+
- Pytorch 1.12.1+cu116
|
80 |
+
- Datasets 2.11.0
|
81 |
+
- Tokenizers 0.12.1
|