mjwong commited on
Commit
fd3c9e8
1 Parent(s): 18875dc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -0
README.md CHANGED
@@ -1,3 +1,74 @@
1
  ---
 
 
 
 
 
 
 
 
 
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ datasets:
3
+ - glue
4
+ - anli
5
+ model-index:
6
+ - name: e5-large-mnli-anli
7
+ results: []
8
+ pipeline_tag: zero-shot-classification
9
+ language:
10
+ - en
11
  license: mit
12
  ---
13
+
14
+ # e5-large-mnli-anli
15
+
16
+ This model is a fine-tuned version of [intfloat/e5-large](https://huggingface.co/intfloat/e5-large) on the glue (mnli) and anli dataset.
17
+
18
+ ## Model description
19
+
20
+ [Text Embeddings by Weakly-Supervised Contrastive Pre-training](https://arxiv.org/pdf/2212.03533.pdf).
21
+ Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, Furu Wei, arXiv 2022
22
+
23
+ ## How to use the model
24
+
25
+ The model can be loaded with the `zero-shot-classification` pipeline like so:
26
+
27
+ ```python
28
+ from transformers import pipeline
29
+ classifier = pipeline("zero-shot-classification",
30
+ model="mjwong/e5-large-mnli-anli")
31
+ ```
32
+
33
+ You can then use this pipeline to classify sequences into any of the class names you specify.
34
+
35
+ ```python
36
+ sequence_to_classify = "one day I will see the world"
37
+ candidate_labels = ['travel', 'cooking', 'dancing']
38
+ classifier(sequence_to_classify, candidate_labels)
39
+ #{'sequence': 'one day I will see the world',
40
+ # 'labels': ['travel', 'dancing', 'cooking'],
41
+ # 'scores': [0.9878318905830383, 0.01044005248695612, 0.001728130504488945]}
42
+ ```
43
+
44
+ If more than one candidate label can be correct, pass `multi_class=True` to calculate each class independently:
45
+
46
+ ```python
47
+ candidate_labels = ['travel', 'cooking', 'dancing', 'exploration']
48
+ classifier(sequence_to_classify, candidate_labels, multi_class=True)
49
+ #{'sequence': 'one day I will see the world',
50
+ # 'labels': ['exploration', 'travel', 'dancing', 'cooking'],
51
+ # 'scores': [0.9956096410751343,
52
+ # 0.9929478764533997,
53
+ # 0.21706733107566833,
54
+ # 0.0005817742203362286]}
55
+ ```
56
+
57
+ ### Training hyperparameters
58
+
59
+ The following hyperparameters were used during training:
60
+
61
+ - learning_rate: 2e-05
62
+ - train_batch_size: 16
63
+ - eval_batch_size: 16
64
+ - seed: 42
65
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
66
+ - lr_scheduler_type: linear
67
+ - lr_scheduler_warmup_ratio: 0.1
68
+ - num_epochs: 2
69
+
70
+ ### Framework versions
71
+ - Transformers 4.28.1
72
+ - Pytorch 1.12.1+cu116
73
+ - Datasets 2.11.0
74
+ - Tokenizers 0.12.1