mjwong commited on
Commit
9320d3c
1 Parent(s): ce14338

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -12
README.md CHANGED
@@ -53,12 +53,6 @@ You can then use this pipeline to classify sequences into any of the class names
53
  sequence_to_classify = "Angela Merkel ist eine Politikerin in Deutschland und Vorsitzende der CDU"
54
  candidate_labels = ["politics", "economy", "entertainment", "environment"]
55
  classifier(sequence_to_classify, candidate_labels)
56
- #{'sequence': 'Angela Merkel ist eine Politikerin in Deutschland und Vorsitzende der CDU',
57
- # 'labels': ['politics', 'economy', 'environment', 'entertainment'],
58
- # 'scores': [0.4970444142818451,
59
- # 0.3297286927700043,
60
- # 0.08716338872909546,
61
- # 0.086063452064991]}
62
  ```
63
 
64
  If more than one candidate label can be correct, pass `multi_class=True` to calculate each class independently:
@@ -66,12 +60,6 @@ If more than one candidate label can be correct, pass `multi_class=True` to calc
66
  ```python
67
  candidate_labels = ["politics", "economy", "entertainment", "environment"]
68
  classifier(sequence_to_classify, candidate_labels, multi_label=True)
69
- #{'sequence': 'Angela Merkel ist eine Politikerin in Deutschland und Vorsitzende der CDU',
70
- # 'labels': ['politics', 'economy', 'environment', 'entertainment'],
71
- # 'scores': [0.6669772267341614,
72
- # 0.4559520483016968,
73
- # 0.004513110034167767,
74
- # 0.0035143839195370674]}
75
  ```
76
 
77
  ### Eval results
 
53
  sequence_to_classify = "Angela Merkel ist eine Politikerin in Deutschland und Vorsitzende der CDU"
54
  candidate_labels = ["politics", "economy", "entertainment", "environment"]
55
  classifier(sequence_to_classify, candidate_labels)
 
 
 
 
 
 
56
  ```
57
 
58
  If more than one candidate label can be correct, pass `multi_class=True` to calculate each class independently:
 
60
  ```python
61
  candidate_labels = ["politics", "economy", "entertainment", "environment"]
62
  classifier(sequence_to_classify, candidate_labels, multi_label=True)
 
 
 
 
 
 
63
  ```
64
 
65
  ### Eval results