DeDeckerThomas commited on
Commit
82d6c5a
1 Parent(s): 545eea0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -2
README.md CHANGED
@@ -234,7 +234,7 @@ def extract_keyphrases(example, predictions, tokenizer, index=0):
234
  return np.unique([kp.strip() for kp in extracted_kps])
235
 
236
  ```
237
- ## 📝Evaluation results
238
 
239
  One of the traditional evaluation methods is the precision, recall and F1-score @k,m where k is the number that stands for the first k predicted keyphrases and m for the average amount of predicted keyphrases.
240
  The model achieves the following results on the Inspec test set:
@@ -243,4 +243,7 @@ The model achieves the following results on the Inspec test set:
243
  |:-----------------:|:----:|:----:|:----:|:----:|:----:|:-----:|:----:|:----:|:----:|
244
  | Inspec Test Set | 0.53 | 0.47 | 0.46 | 0.36 | 0.58 | 0.41 | 0.58 | 0.60 | 0.56 |
245
 
246
- For more information on the evaluation process, you can take a look at the keyphrase extraction evaluation notebook.
 
 
 
 
234
  return np.unique([kp.strip() for kp in extracted_kps])
235
 
236
  ```
237
+ ## 📝 Evaluation results
238
 
239
  One of the traditional evaluation methods is the precision, recall and F1-score @k,m where k is the number that stands for the first k predicted keyphrases and m for the average amount of predicted keyphrases.
240
  The model achieves the following results on the Inspec test set:
 
243
  |:-----------------:|:----:|:----:|:----:|:----:|:----:|:-----:|:----:|:----:|:----:|
244
  | Inspec Test Set | 0.53 | 0.47 | 0.46 | 0.36 | 0.58 | 0.41 | 0.58 | 0.60 | 0.56 |
245
 
246
+ For more information on the evaluation process, you can take a look at the keyphrase extraction evaluation notebook.
247
+
248
+ ## 🚨 Issues
249
+ Please feel free to contact Thomas De Decker for any problems with this model.