File size: 11,917 Bytes
a6c8cc5 83b6e21 a6c8cc5 83b6e21 da1898a 83b6e21 d9eaf43 83b6e21 d9eaf43 3ffb2cc d9eaf43 7d1f9ca d9eaf43 3ffb2cc d9eaf43 a6c8cc5 958ab29 da1898a 83b6e21 ea91f28 83b6e21 da1898a 83b6e21 da1898a 83b6e21 96251f2 cc84815 96251f2 83b6e21 96251f2 cc84815 96251f2 2cd8f03 83b6e21 8f3773d f804ef4 96251f2 2164998 83b6e21 96251f2 da1898a 96251f2 da1898a 96251f2 83b6e21 8f3773d 83b6e21 da1898a 83b6e21 da1898a 83b6e21 da1898a 83b6e21 da1898a 83b6e21 da1898a 83b6e21 da1898a 1ef4e76 da1898a 1ef4e76 da1898a 83b6e21 1ef4e76 83b6e21 1ef4e76 83b6e21 ea91f28 efdb4ed 83b6e21 7d1f9ca da1898a 7d1f9ca 3ffb2cc 83b6e21 da1898a 7d1f9ca 3ffb2cc 7d1f9ca 83b6e21 2cd8f03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
---
language: en
license: mit
tags:
- keyphrase-generation
datasets:
- midas/inspec
widget:
- text: "Keyphrase extraction is a technique in text analysis where you extract the important keyphrases from a document.
Thanks to these keyphrases humans can understand the content of a text very quickly and easily without reading
it completely. Keyphrase extraction was first done primarily by human annotators, who read the text in detail
and then wrote down the most important keyphrases. The disadvantage is that if you work with a lot of documents,
this process can take a lot of time.
Here is where Artificial Intelligence comes in. Currently, classical machine learning methods, that use statistical
and linguistic features, are widely used for the extraction process. Now with deep learning, it is possible to capture
the semantic meaning of a text even better than these classical methods. Classical methods look at the frequency,
occurrence and order of words in the text, whereas these neural approaches can capture long-term semantic dependencies
and context of words in a text."
example_title: "Example 1"
- text: "In this work, we explore how to learn task specific language models aimed towards learning rich representation of keyphrases from text documents. We experiment with different masking strategies for pre-training transformer language models (LMs) in discriminative as well as generative settings. In the discriminative setting, we introduce a new pre-training objective - Keyphrase Boundary Infilling with Replacement (KBIR), showing large gains in performance (up to 9.26 points in F1) over SOTA, when LM pre-trained using KBIR is fine-tuned for the task of keyphrase extraction. In the generative setting, we introduce a new pre-training setup for BART - KeyBART, that reproduces the keyphrases related to the input text in the CatSeq format, instead of the denoised original input. This also led to gains in performance (up to 4.33 points inF1@M) over SOTA for keyphrase generation. Additionally, we also fine-tune the pre-trained language models on named entity recognition(NER), question answering (QA), relation extraction (RE), abstractive summarization and achieve comparable performance with that of the SOTA, showing that learning rich representation of keyphrases is indeed beneficial for many other fundamental NLP tasks."
example_title: "Example 2"
model-index:
- name: DeDeckerThomas/keyphrase-generation-keybart-inspec
results:
- task:
type: keyphrase-generation
name: Keyphrase Generation
dataset:
type: midas/inspec
name: inspec
metrics:
- type: F1@M (Present)
value: 0.361
name: F1@M (Present)
- type: F1@O (Present)
value: 0.329
name: F1@O (Present)
- type: F1@M (Absent)
value: 0.083
name: F1@M (Absent)
- type: F1@O (Absent)
value: 0.080
name: F1@O (Absent)
---
# π Keyphrase Generation Model: KeyBART-inspec
Keyphrase extraction is a technique in text analysis where you extract the important keyphrases from a document. Thanks to these keyphrases humans can understand the content of a text very quickly and easily without reading it completely. Keyphrase extraction was first done primarily by human annotators, who read the text in detail and then wrote down the most important keyphrases. The disadvantage is that if you work with a lot of documents, this process can take a lot of time β³.
Here is where Artificial Intelligence π€ comes in. Currently, classical machine learning methods, that use statistical and linguistic features, are widely used for the extraction process. Now with deep learning, it is possible to capture the semantic meaning of a text even better than these classical methods. Classical methods look at the frequency, occurrence and order of words in the text, whereas these neural approaches can capture long-term semantic dependencies and context of words in a text.
## π Model Description
This model uses [KeyBART](https://huggingface.co/bloomberg/KeyBART) as its base model and fine-tunes it on the [Inspec dataset](https://huggingface.co/datasets/midas/inspec). KeyBART focuses on learning a better representation of keyphrases in a generative setting. It produces the keyphrases associated with the input document from a corrupted input. The input is changed by token masking, keyphrase masking and keyphrase replacement. This model can already be used without any fine-tuning, but can be fine-tuned if needed.
You can find more information about the architecture in this [paper](https://arxiv.org/abs/2112.08547).
Kulkarni, Mayank, Debanjan Mahata, Ravneet Arora, and Rajarshi Bhowmik. "Learning Rich Representation of Keyphrases from Text." arXiv preprint arXiv:2112.08547 (2021).
## β Intended Uses & Limitations
### π Limitations
* This keyphrase generation model is very domain-specific and will perform very well on abstracts of scientific papers. It's not recommended to use this model for other domains, but you are free to test it out.
* Only works for English documents.
### β How To Use
```python
# Model parameters
from transformers import (
Text2TextGenerationPipeline,
AutoModelForSeq2SeqLM,
AutoTokenizer,
)
class KeyphraseGenerationPipeline(Text2TextGenerationPipeline):
def __init__(self, model, keyphrase_sep_token=";", *args, **kwargs):
super().__init__(
model=AutoModelForSeq2SeqLM.from_pretrained(model),
tokenizer=AutoTokenizer.from_pretrained(model),
*args,
**kwargs
)
self.keyphrase_sep_token = keyphrase_sep_token
def postprocess(self, model_outputs):
results = super().postprocess(
model_outputs=model_outputs
)
return [[keyphrase.strip() for keyphrase in result.get("generated_text").split(self.keyphrase_sep_token) if keyphrase != ""] for result in results]
```
```python
# Load pipeline
model_name = "ml6team/keyphrase-generation-keybart-inspec"
generator = KeyphraseGenerationPipeline(model=model_name)
```
```python
# Inference
text = """
Keyphrase extraction is a technique in text analysis where you extract the
important keyphrases from a document. Thanks to these keyphrases humans can
understand the content of a text very quickly and easily without reading it
completely. Keyphrase extraction was first done primarily by human annotators,
who read the text in detail and then wrote down the most important keyphrases.
The disadvantage is that if you work with a lot of documents, this process
can take a lot of time.
Here is where Artificial Intelligence comes in. Currently, classical machine
learning methods, that use statistical and linguistic features, are widely used
for the extraction process. Now with deep learning, it is possible to capture
the semantic meaning of a text even better than these classical methods.
Classical methods look at the frequency, occurrence and order of words
in the text, whereas these neural approaches can capture long-term
semantic dependencies and context of words in a text.
""".replace("\n", " ")
keyphrases = generator(text)
print(keyphrases)
```
```
# Output
[['keyphrase extraction', 'text analysis', 'keyphrases', 'human annotators', 'artificial']]
```
## π Training Dataset
[Inspec](https://huggingface.co/datasets/midas/inspec) is a keyphrase extraction/generation dataset consisting of 2000 English scientific papers from the scientific domains of Computers and Control and Information Technology published between 1998 to 2002. The keyphrases are annotated by professional indexers or editors.
You can find more information in the [paper](https://dl.acm.org/doi/10.3115/1119355.1119383).
## π·ββοΈ Training Procedure
### Training Parameters
| Parameter | Value |
| --------- | ------|
| Learning Rate | 5e-5 |
| Epochs | 15 |
| Early Stopping Patience | 1 |
### Preprocessing
The documents in the dataset are already preprocessed into list of words with the corresponding keyphrases. The only thing that must be done is tokenization and joining all keyphrases into one string with a certain seperator of choice( ```;``` ).
```python
from datasets import load_dataset
from transformers import AutoTokenizer
# Tokenizer
tokenizer = AutoTokenizer.from_pretrained("bloomberg/KeyBART", add_prefix_space=True)
# Dataset parameters
dataset_full_name = "midas/inspec"
dataset_subset = "raw"
dataset_document_column = "document"
keyphrase_sep_token = ";"
def preprocess_keyphrases(text_ids, kp_list):
kp_order_list = []
kp_set = set(kp_list)
text = tokenizer.decode(
text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
text = text.lower()
for kp in kp_set:
kp = kp.strip()
kp_index = text.find(kp.lower())
kp_order_list.append((kp_index, kp))
kp_order_list.sort()
present_kp, absent_kp = [], []
for kp_index, kp in kp_order_list:
if kp_index < 0:
absent_kp.append(kp)
else:
present_kp.append(kp)
return present_kp, absent_kp
def preprocess_fuction(samples):
processed_samples = {"input_ids": [], "attention_mask": [], "labels": []}
for i, sample in enumerate(samples[dataset_document_column]):
input_text = " ".join(sample)
inputs = tokenizer(
input_text,
padding="max_length",
truncation=True,
)
present_kp, absent_kp = preprocess_keyphrases(
text_ids=inputs["input_ids"],
kp_list=samples["extractive_keyphrases"][i]
+ samples["abstractive_keyphrases"][i],
)
keyphrases = present_kp
keyphrases += absent_kp
target_text = f" {keyphrase_sep_token} ".join(keyphrases)
with tokenizer.as_target_tokenizer():
targets = tokenizer(
target_text, max_length=40, padding="max_length", truncation=True
)
targets["input_ids"] = [
(t if t != tokenizer.pad_token_id else -100)
for t in targets["input_ids"]
]
for key in inputs.keys():
processed_samples[key].append(inputs[key])
processed_samples["labels"].append(targets["input_ids"])
return processed_samples
# Load dataset
dataset = load_dataset(dataset_full_name, dataset_subset)
# Preprocess dataset
tokenized_dataset = dataset.map(preprocess_fuction, batched=True)
```
### Postprocessing
For the post-processing, you will need to split the string based on the keyphrase separator.
```python
def extract_keyphrases(examples):
return [example.split(keyphrase_sep_token) for example in examples]
```
## π Evaluation results
Traditional evaluation methods are the precision, recall and F1-score @k,m where k is the number that stands for the first k predicted keyphrases and m for the average amount of predicted keyphrases. In keyphrase generation you also look at F1@O where O stands for the number of ground truth keyphrases.
The model achieves the following results on the Inspec test set:
### Extractive Keyphrases
| Dataset | P@5 | R@5 | F1@5 | P@10 | R@10 | F1@10 | P@M | R@M | F1@M | P@O | R@O | F1@O |
|:-----------------:|:----:|:----:|:----:|:----:|:----:|:-----:|:----:|:----:|:----:|:----:|:----:|:----:|
| Inspec Test Set | 0.40 | 0.37 | 0.35 | 0.20 | 0.37 | 0.24 | 0.42 | 0.37 | 0.36 | 0.33 | 0.33 | 0.33 |
### Abstractive Keyphrases
| Dataset | P@5 | R@5 | F1@5 | P@10 | R@10 | F1@10 | P@M | R@M | F1@M | P@O | R@O | F1@O |
|:-----------------:|:----:|:----:|:----:|:----:|:----:|:-----:|:----:|:----:|:----:|:----:|:----:|:----:|
| Inspec Test Set | 0.07 | 0.12 | 0.08 | 0.03 | 0.12 | 0.05 | 0.08 | 0.12 | 0.08 | 0.08 | 0.12 | 0.08 |
## π¨ Issues
Please feel free to start discussions in the Community Tab. |