File size: 11,917 Bytes
a6c8cc5
83b6e21
a6c8cc5
83b6e21
 
 
 
 
da1898a
 
 
 
 
 
 
 
 
 
 
83b6e21
 
 
 
 
 
 
 
 
 
 
 
 
d9eaf43
83b6e21
d9eaf43
 
3ffb2cc
d9eaf43
 
7d1f9ca
d9eaf43
 
3ffb2cc
d9eaf43
a6c8cc5
958ab29
da1898a
 
 
 
83b6e21
 
ea91f28
 
83b6e21
 
 
da1898a
83b6e21
 
 
 
da1898a
83b6e21
96251f2
 
 
cc84815
96251f2
 
83b6e21
96251f2
 
 
 
cc84815
96251f2
 
 
 
 
 
 
 
 
 
2cd8f03
 
83b6e21
 
 
8f3773d
f804ef4
96251f2
2164998
83b6e21
96251f2
da1898a
96251f2
da1898a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96251f2
 
 
 
83b6e21
8f3773d
 
83b6e21
 
da1898a
83b6e21
 
 
da1898a
83b6e21
da1898a
83b6e21
da1898a
 
83b6e21
 
 
 
 
 
 
 
da1898a
83b6e21
da1898a
 
 
 
 
 
 
 
 
 
 
 
 
 
1ef4e76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da1898a
1ef4e76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da1898a
 
 
 
 
 
83b6e21
 
 
1ef4e76
83b6e21
1ef4e76
 
83b6e21
 
ea91f28
efdb4ed
83b6e21
 
7d1f9ca
da1898a
7d1f9ca
3ffb2cc
 
 
83b6e21
da1898a
7d1f9ca
3ffb2cc
 
 
7d1f9ca
83b6e21
2cd8f03
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
---
language: en
license: mit
tags:
- keyphrase-generation
datasets:
- midas/inspec
widget:
- text: "Keyphrase extraction is a technique in text analysis where you extract the important keyphrases from a document. 
Thanks to these keyphrases humans can understand the content of a text very quickly and easily without reading 
it completely. Keyphrase extraction was first done primarily by human annotators, who read the text in detail 
and then wrote down the most important keyphrases. The disadvantage is that if you work with a lot of documents, 
this process can take a lot of time. 

Here is where Artificial Intelligence comes in. Currently, classical machine learning methods, that use statistical 
and linguistic features, are widely used for the extraction process. Now with deep learning, it is possible to capture 
the semantic meaning of a text even better than these classical methods. Classical methods look at the frequency, 
occurrence and order of words in the text, whereas these neural approaches can capture long-term semantic dependencies 
and context of words in a text."
  example_title: "Example 1"
- text: "In this work, we explore how to learn task specific language models aimed towards learning rich representation of keyphrases from text documents. We experiment with different masking strategies for pre-training transformer language models (LMs) in discriminative as well as generative settings. In the discriminative setting, we introduce a new pre-training objective - Keyphrase Boundary Infilling with Replacement (KBIR), showing large gains in performance (up to 9.26 points in F1) over SOTA, when LM pre-trained using KBIR is fine-tuned for the task of keyphrase extraction. In the generative setting, we introduce a new pre-training setup for BART - KeyBART, that reproduces the keyphrases related to the input text in the CatSeq format, instead of the denoised original input. This also led to gains in performance (up to 4.33 points inF1@M) over SOTA for keyphrase generation. Additionally, we also fine-tune the pre-trained language models on named entity recognition(NER), question answering (QA), relation extraction (RE), abstractive summarization and achieve comparable performance with that of the SOTA, showing that learning rich representation of keyphrases is indeed beneficial for many other fundamental NLP tasks."
  example_title: "Example 2"
model-index:
- name: DeDeckerThomas/keyphrase-generation-keybart-inspec
  results:
  - task: 
      type: keyphrase-generation
      name: Keyphrase Generation
    dataset:
      type: midas/inspec
      name: inspec
    metrics:
      - type: F1@M (Present)
        value: 0.361
        name: F1@M (Present)
      - type: F1@O (Present)
        value: 0.329
        name: F1@O (Present)
      - type: F1@M (Absent)
        value: 0.083
        name: F1@M (Absent)
      - type: F1@O (Absent)
        value: 0.080
        name: F1@O (Absent)
---

# πŸ”‘ Keyphrase Generation Model: KeyBART-inspec
Keyphrase extraction is a technique in text analysis where you extract the important keyphrases from a document. Thanks to these keyphrases humans can understand the content of a text very quickly and easily without reading it completely. Keyphrase extraction was first done primarily by human annotators, who read the text in detail and then wrote down the most important keyphrases. The disadvantage is that if you work with a lot of documents, this process can take a lot of time ⏳. 

Here is where Artificial Intelligence πŸ€– comes in. Currently, classical machine learning methods, that use statistical and linguistic features, are widely used for the extraction process. Now with deep learning, it is possible to capture the semantic meaning of a text even better than these classical methods. Classical methods look at the frequency, occurrence and order of words in the text, whereas these neural approaches can capture long-term semantic dependencies and context of words in a text.

## πŸ““ Model Description
This model uses [KeyBART](https://huggingface.co/bloomberg/KeyBART) as its base model and fine-tunes it on the [Inspec dataset](https://huggingface.co/datasets/midas/inspec). KeyBART focuses on learning a better representation of keyphrases in a generative setting. It produces the keyphrases associated with the input document from a corrupted input. The input is changed by token masking, keyphrase masking and keyphrase replacement. This model can already be used without any fine-tuning, but can be fine-tuned if needed.
You can find more information about the architecture in this [paper](https://arxiv.org/abs/2112.08547).

Kulkarni, Mayank, Debanjan Mahata, Ravneet Arora, and Rajarshi Bhowmik. "Learning Rich Representation of Keyphrases from Text." arXiv preprint arXiv:2112.08547 (2021).

## βœ‹ Intended Uses & Limitations
### πŸ›‘ Limitations
* This keyphrase generation model is very domain-specific and will perform very well on abstracts of scientific papers. It's not recommended to use this model for other domains, but you are free to test it out.
* Only works for English documents.

### ❓ How To Use
```python
# Model parameters
from transformers import (
    Text2TextGenerationPipeline,
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
)


class KeyphraseGenerationPipeline(Text2TextGenerationPipeline):
    def __init__(self, model, keyphrase_sep_token=";", *args, **kwargs):
        super().__init__(
            model=AutoModelForSeq2SeqLM.from_pretrained(model),
            tokenizer=AutoTokenizer.from_pretrained(model),
            *args,
            **kwargs
        )
        self.keyphrase_sep_token = keyphrase_sep_token

    def postprocess(self, model_outputs):
        results = super().postprocess(
            model_outputs=model_outputs
        )
        return [[keyphrase.strip() for keyphrase in result.get("generated_text").split(self.keyphrase_sep_token) if keyphrase != ""] for result in results]

```

```python
# Load pipeline
model_name = "ml6team/keyphrase-generation-keybart-inspec"
generator = KeyphraseGenerationPipeline(model=model_name)
```

```python
# Inference
text = """
Keyphrase extraction is a technique in text analysis where you extract the
important keyphrases from a document. Thanks to these keyphrases humans can
understand the content of a text very quickly and easily without reading it
completely. Keyphrase extraction was first done primarily by human annotators,
who read the text in detail and then wrote down the most important keyphrases.
The disadvantage is that if you work with a lot of documents, this process
can take a lot of time. 

Here is where Artificial Intelligence comes in. Currently, classical machine
learning methods, that use statistical and linguistic features, are widely used
for the extraction process. Now with deep learning, it is possible to capture
the semantic meaning of a text even better than these classical methods.
Classical methods look at the frequency, occurrence and order of words
in the text, whereas these neural approaches can capture long-term
semantic dependencies and context of words in a text.
""".replace("\n", " ")

keyphrases = generator(text)

print(keyphrases)

```

```
# Output
[['keyphrase extraction', 'text analysis', 'keyphrases', 'human annotators', 'artificial']]
```

## πŸ“š Training Dataset
[Inspec](https://huggingface.co/datasets/midas/inspec) is a keyphrase extraction/generation dataset consisting of 2000 English scientific papers from the scientific domains of Computers and Control and Information Technology published between 1998 to 2002. The keyphrases are annotated by professional indexers or editors.

You can find more information in the [paper](https://dl.acm.org/doi/10.3115/1119355.1119383).

## πŸ‘·β€β™‚οΈ Training Procedure
### Training Parameters

| Parameter | Value |
| --------- | ------|
| Learning Rate | 5e-5 |
| Epochs | 15 |
| Early Stopping Patience | 1 |

### Preprocessing
The documents in the dataset are already preprocessed into list of words with the corresponding keyphrases. The only thing that must be done is tokenization and joining all keyphrases into one string with a certain seperator of choice( ```;``` ). 
```python
from datasets import load_dataset
from transformers import AutoTokenizer

# Tokenizer
tokenizer = AutoTokenizer.from_pretrained("bloomberg/KeyBART", add_prefix_space=True)

# Dataset parameters
dataset_full_name = "midas/inspec"
dataset_subset = "raw"
dataset_document_column = "document"

keyphrase_sep_token = ";"

def preprocess_keyphrases(text_ids, kp_list):
    kp_order_list = []
    kp_set = set(kp_list)
    text = tokenizer.decode(
        text_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True
    )
    text = text.lower()
    for kp in kp_set:
        kp = kp.strip()
        kp_index = text.find(kp.lower())
        kp_order_list.append((kp_index, kp))

    kp_order_list.sort()
    present_kp, absent_kp = [], []

    for kp_index, kp in kp_order_list:
        if kp_index < 0:
            absent_kp.append(kp)
        else:
            present_kp.append(kp)
    return present_kp, absent_kp


def preprocess_fuction(samples):
    processed_samples = {"input_ids": [], "attention_mask": [], "labels": []}
    for i, sample in enumerate(samples[dataset_document_column]):
        input_text = " ".join(sample)
        inputs = tokenizer(
            input_text,
            padding="max_length",
            truncation=True,
        )
        present_kp, absent_kp = preprocess_keyphrases(
            text_ids=inputs["input_ids"],
            kp_list=samples["extractive_keyphrases"][i]
            + samples["abstractive_keyphrases"][i],
        )
        keyphrases = present_kp
        keyphrases += absent_kp

        target_text = f" {keyphrase_sep_token} ".join(keyphrases)

        with tokenizer.as_target_tokenizer():
            targets = tokenizer(
                target_text, max_length=40, padding="max_length", truncation=True
            )
            targets["input_ids"] = [
                (t if t != tokenizer.pad_token_id else -100)
                for t in targets["input_ids"]
            ]
        for key in inputs.keys():
            processed_samples[key].append(inputs[key])
        processed_samples["labels"].append(targets["input_ids"])
    return processed_samples

# Load dataset
dataset = load_dataset(dataset_full_name, dataset_subset)
# Preprocess dataset
tokenized_dataset = dataset.map(preprocess_fuction, batched=True)
    
```

### Postprocessing
For the post-processing, you will need to split the string based on the keyphrase separator.
```python
def extract_keyphrases(examples):
    return [example.split(keyphrase_sep_token) for example in examples]
```
## πŸ“ Evaluation results
Traditional evaluation methods are the precision, recall and F1-score @k,m where k is the number that stands for the first k predicted keyphrases and m for the average amount of predicted keyphrases. In keyphrase generation you also look at F1@O where O stands for the number of ground truth keyphrases.

The model achieves the following results on the Inspec test set:


### Extractive Keyphrases

| Dataset           | P@5  | R@5  | F1@5 | P@10 | R@10 | F1@10 | P@M  | R@M  | F1@M | P@O  | R@O  | F1@O |
|:-----------------:|:----:|:----:|:----:|:----:|:----:|:-----:|:----:|:----:|:----:|:----:|:----:|:----:|
| Inspec Test Set   | 0.40 | 0.37 | 0.35 | 0.20 | 0.37 | 0.24  | 0.42 | 0.37 | 0.36 | 0.33 | 0.33 | 0.33 |

### Abstractive Keyphrases

| Dataset           | P@5  | R@5  | F1@5 | P@10 | R@10 | F1@10 | P@M  | R@M  | F1@M | P@O  | R@O  | F1@O |
|:-----------------:|:----:|:----:|:----:|:----:|:----:|:-----:|:----:|:----:|:----:|:----:|:----:|:----:|
| Inspec Test Set   | 0.07 | 0.12 | 0.08 | 0.03 | 0.12 | 0.05  | 0.08 | 0.12 | 0.08 | 0.08 | 0.12 | 0.08 |

## 🚨 Issues
Please feel free to start discussions in the Community Tab.