mlabonne commited on
Commit
e8789f1
1 Parent(s): 9a1c800

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -169
README.md CHANGED
@@ -1,199 +1,117 @@
1
  ---
2
- library_name: transformers
3
- license: cc-by-4.0
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
 
 
 
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
 
 
 
 
 
 
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
 
 
 
 
 
 
 
 
51
 
52
- ### Out-of-Scope Use
 
 
 
 
 
 
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
 
 
 
 
 
 
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
61
 
62
- [More Information Needed]
 
63
 
64
- ### Recommendations
 
 
 
 
 
 
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: cc-by-nc-4.0
3
+ tags:
4
+ - merge
5
+ - lazymergekit
6
+ dataset:
7
+ - mlabonne/truthy-dpo-v0.1
8
+ - mlabonne/distilabel-intel-orca-dpo-pairs
9
+ - mlabonne/distilabel-intel-orca-dpo-pairs
10
+ base_model:
11
+ - mlabonne/NeuralMonarch-7B
12
+ language:
13
+ - en
14
  ---
15
 
16
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/TI7C8F2gk43gmI9U2L0uk.jpeg)
17
 
18
+ # 👑 AlphaMonarch-7B
19
 
20
+ **Update 14/02/24: AlphaMonarch-7B is the new best-performing 7B model on Nous' benchmark suite! 🎉**
21
 
22
+ AlphaMonarch-7B is a DPO fine-tuned of [mlabonne/NeuralMonarch-7B](https://huggingface.co/mlabonne/NeuralMonarch-7B/) using the [argilla/OpenHermes2.5-dpo-binarized-alpha](https://huggingface.co/datasets/argilla/OpenHermes2.5-dpo-binarized-alpha) preference dataset.
23
 
24
+ It is based on a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
25
+ * [mlabonne/OmniTruthyBeagle-7B-v0](https://huggingface.co/mlabonne/OmniTruthyBeagle-7B-v0)
26
+ * [mlabonne/NeuBeagle-7B](https://huggingface.co/mlabonne/NeuBeagle-7B)
27
+ * [mlabonne/NeuralOmniBeagle-7B](https://huggingface.co/mlabonne/NeuralOmniBeagle-7B)
28
 
29
+ Special thanks to [Jon Durbin](https://huggingface.co/jondurbin), [Intel](https://huggingface.co/Intel), and [Argilla](https://huggingface.co/argilla) for the preference datasets.
30
 
31
+ ## 🔍 Applications
32
 
33
+ This model uses a context window of 8k. I recommend using it with the Mistral Instruct chat template.
34
 
35
+ Compared to other 7B models, it displays good performance in instruction following and reasoning tasks. It can also be used for RP and storytelling.
 
 
 
 
 
 
36
 
37
+ ## Quantized models
38
 
39
+ * **GGUF**: https://huggingface.co/mlabonne/NeuralMonarch-7B-GGUF
40
 
41
+ ## 🏆 Evaluation
 
 
42
 
43
+ ### Nous
44
 
45
+ The evaluation was performed using [LLM AutoEval](https://github.com/mlabonne/llm-autoeval) on Nous suite. See the entire leaderboard [here](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard).
46
 
47
+ | Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
48
+ |---|---:|---:|---:|---:|---:|
49
+ | [**NeuralMonarch-7B**](https://huggingface.co/mlabonne/NeuralMonarch-7B) [📄](https://gist.github.com/mlabonne/64050c96c6aa261a8f5b403190c8dee4) | **62.73** | **45.31** | **76.99** | **78.35** | **50.28** |
50
+ | [Monarch-7B](https://huggingface.co/mlabonne/Monarch-7B) [📄](https://gist.github.com/mlabonne/0b8d057c5ece41e0290580a108c7a093) | 62.68 | 45.48 | 77.07 | 78.04 | 50.14 |
51
+ | [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) [📄](https://gist.github.com/mlabonne/88b21dd9698ffed75d6163ebdc2f6cc8) | 52.42 | 42.75 | 72.99 | 52.99 | 40.94 |
52
+ | [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) [📄](https://gist.github.com/mlabonne/14687f1eb3425b166db511f31f8e66f6) | 53.51 | 43.67 | 73.24 | 55.37 | 41.76 |
53
+ | [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B) [📄](https://gist.github.com/mlabonne/ad0c665bbe581c8420136c3b52b3c15c) | 60.25 | 46.06 | 76.77 | 70.32 | 47.86 |
54
+ | [eren23/dpo-binarized-NeuralTrix-7B](https://huggingface.co/eren23/dpo-binarized-NeuralTrix-7B) [📄](https://gist.github.com/CultriX-Github/dbdde67ead233df0c7c56f1b091f728c) | 62.5 | 44.57 | 76.34 | 79.81 | 49.27 |
55
+ | [CultriX/NeuralTrix-7B-dpo](https://huggingface.co/CultriX/NeuralTrix-7B-dpo) [📄](https://gist.github.com/CultriX-Github/df0502599867d4043b45d9dafb5976e8) | 62.5 | 44.61 | 76.33 | 79.8 | 49.24 |
56
 
57
+ ### Open LLM Leaderboard
58
 
59
+ AlphaMonarch-7B is one of the best-performing non-merge 7B models on the Open LLM Leaderboard:
60
 
61
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/njHxX_ERQaBssHqp17fMy.png)
62
 
63
+ ### MT-Bench
64
 
65
+ ```
66
+ ########## First turn ##########
67
+ score
68
+ model turn
69
+ gpt-4 1 8.95625
70
+ AlphaMonarch-7B 1 8.23750
71
+ claude-v1 1 8.15000
72
+ gpt-3.5-turbo 1 8.07500
73
+ claude-instant-v1 1 7.80000
74
 
75
+ ########## Second turn ##########
76
+ score
77
+ model turn
78
+ gpt-4 2 9.025000
79
+ claude-instant-v1 2 8.012658
80
+ gpt-3.5-turbo 2 7.812500
81
+ claude-v1 2 7.650000
82
+ AlphaMonarch-7B 2 7.618750
83
 
84
+ ########## Average ##########
85
+ score
86
+ model
87
+ gpt-4 8.990625
88
+ gpt-3.5-turbo 7.943750
89
+ AlphaMonarch-7B 7.928125
90
+ claude-instant-v1 7.905660
91
+ claude-v1 7.900000
92
+ ```
93
 
94
+ ## 💻 Usage
95
 
96
+ ```python
97
+ !pip install -qU transformers accelerate
98
 
99
+ from transformers import AutoTokenizer
100
+ import transformers
101
+ import torch
102
 
103
+ model = "mlabonne/MonarchMonarch-7B"
104
+ messages = [{"role": "user", "content": "What is a large language model?"}]
105
 
106
+ tokenizer = AutoTokenizer.from_pretrained(model)
107
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
108
+ pipeline = transformers.pipeline(
109
+ "text-generation",
110
+ model=model,
111
+ torch_dtype=torch.float16,
112
+ device_map="auto",
113
+ )
114
 
115
+ outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
116
+ print(outputs[0]["generated_text"])
117
+ ```