File size: 2,835 Bytes
ef797d7 df5eefc ef797d7 df5eefc ef797d7 7b9ff69 ef797d7 4a6dc57 7b9ff69 ef797d7 df5eefc ef797d7 df5eefc ef797d7 df5eefc ef797d7 df5eefc ef797d7 5198acc 88c40ba 5198acc dbc568b 88c40ba df5eefc ef797d7 df5eefc 7b9ff69 df5eefc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
license: other
license_name: tongyi-qianwen
license_link: https://huggingface.co/Qwen/Qwen2-72B-Instruct/blob/main/LICENSE
language:
- en
pipeline_tag: text-generation
library_name: transformers
tags:
- mergekit
- merge
- lazymergekit
base_model:
- Qwen/Qwen2.5-72B-Instruct
---
# BigQwen2.5-125B-Instruct
![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/98GiKtmH1AtHHbIbOUH4Y.jpeg)
BigQwen2.5-125B-Instruct is a [Qwen/Qwen2-72B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct) self-merge made with [MergeKit](https://github.com/arcee-ai/mergekit/tree/main).
It applies the [mlabonne/Meta-Llama-3-120B-Instruct](https://huggingface.co/mlabonne/Meta-Llama-3-120B-Instruct/) recipe.
I made it due to popular demand but I haven't tested it so use it at your own risk. ¯\\\_(ツ)_/¯
## 🔍 Applications
It might be good for creative writing tasks. I recommend a context length of 32k but you can go up to 131,072 tokens in theory.
## 🏆 Evaluation
I think it's too big for the Open LLM Leaderboard, unfortunately. Here's some feedback from users (thanks a lot!):
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/OhnwtXgIMIcr2pQqggXhU.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/8v_Eb6ZvpVYMhu8kMwklq.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/Px4f-BTJ8nDihzPJ0F47K.png)
## 🧩 Configuration
The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- layer_range: [0, 20]
model: Qwen/Qwen2.5-72B-Instruct
- sources:
- layer_range: [10, 30]
model: Qwen/Qwen2.5-72B-Instruct
- sources:
- layer_range: [20, 40]
model: Qwen/Qwen2.5-72B-Instruct
- sources:
- layer_range: [30, 50]
model: Qwen/Qwen2.5-72B-Instruct
- sources:
- layer_range: [40, 60]
model: Qwen/Qwen2.5-72B-Instruct
- sources:
- layer_range: [50, 70]
model: Qwen/Qwen2.5-72B-Instruct
- sources:
- layer_range: [60, 80]
model: Qwen/Qwen2.5-72B-Instruct
merge_method: passthrough
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/BigQwen2.5-125B-Instruct"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` |