File size: 5,469 Bytes
420fcbc
425b9bf
 
a20a5ed
420fcbc
 
 
 
425b9bf
 
 
580248d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a20a5ed
 
580248d
 
 
 
 
 
 
 
 
 
 
 
 
 
a20a5ed
 
580248d
 
 
 
 
 
 
 
 
 
 
 
 
 
a20a5ed
 
580248d
 
 
 
 
 
 
 
 
 
 
 
 
 
a20a5ed
 
580248d
 
 
 
 
 
 
 
 
 
 
 
 
 
a20a5ed
 
580248d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a20a5ed
 
580248d
420fcbc
425b9bf
 
 
420fcbc
425b9bf
420fcbc
425b9bf
420fcbc
425b9bf
420fcbc
425b9bf
420fcbc
425b9bf
420fcbc
9eb644e
 
 
 
 
 
 
 
 
 
 
 
425b9bf
420fcbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
425b9bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9eb644e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- mergekit
- merge
- lazymergekit
base_model:
- Qwen/Qwen2.5-32B-Instruct
license_name: tongyi-qianwen
license_link: https://huggingface.co/Qwen/Qwen2-72B-Instruct/blob/main/LICENSE
pipeline_tag: text-generation
model-index:
- name: BigQwen2.5-52B-Instruct
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 79.29
      name: strict accuracy
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/BigQwen2.5-52B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 59.81
      name: normalized accuracy
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/BigQwen2.5-52B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 17.82
      name: exact match
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/BigQwen2.5-52B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 6.94
      name: acc_norm
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/BigQwen2.5-52B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 10.45
      name: acc_norm
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/BigQwen2.5-52B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 50.22
      name: accuracy
    source:
      url: >-
        https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=mlabonne/BigQwen2.5-52B-Instruct
      name: Open LLM Leaderboard
---
# BigQwen2.5-52B-Instruct

![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/98GiKtmH1AtHHbIbOUH4Y.jpeg)

BigQwen2.5-52B-Instruct is a [Qwen/Qwen2-32B-Instruct](https://huggingface.co/Qwen/Qwen2-72B-Instruct) self-merge made with [MergeKit](https://github.com/arcee-ai/mergekit/tree/main).

It applies the [mlabonne/Meta-Llama-3-120B-Instruct](https://huggingface.co/mlabonne/Meta-Llama-3-120B-Instruct/) recipe.

I made it due to popular demand but I haven't tested it so use it at your own risk. ¯\\\_(ツ)_## 🔍 Applications

It might be good for creative writing tasks. I recommend a context length of 32k but you can go up to 131,072 tokens in theory.

## 🏆 Evaluation

|      Metric       |BigQwen2.5-Echo-47B-Instruct|**BigQwen2.5-52B-Instruct**|Qwen2.5-32B-Instruct|
|-------------------|----:|----:|----:|
|Avg.               |30.31|37.42|36.17|
|IFEval (0-Shot)    |73.57|79.29|83.46|
|BBH (3-Shot)       |44.52|59.81|56.49|
|MATH Lvl 5 (4-Shot)| 3.47|17.82|0|
|GPQA (0-shot)      | 8.61| 6.94|11.74|
|MuSR (0-shot)      |10.19|10.45|13.5|
|MMLU-PRO (5-shot)  |41.49|50.22|51.85|

## 🧩 Configuration

The following YAML configuration was used to produce this model:

```yaml
slices:
- sources:
  - layer_range: [0, 16]
    model: Qwen/Qwen2.5-32B-Instruct
- sources:
  - layer_range: [8, 24]
    model: Qwen/Qwen2.5-32B-Instruct
- sources:
  - layer_range: [16, 32]
    model: Qwen/Qwen2.5-32B-Instruct
- sources:
  - layer_range: [24, 40]
    model: Qwen/Qwen2.5-32B-Instruct
- sources:
  - layer_range: [32, 48]
    model: Qwen/Qwen2.5-32B-Instruct
- sources:
  - layer_range: [40, 56]
    model: Qwen/Qwen2.5-32B-Instruct
- sources:
  - layer_range: [56, 64]
    model: Qwen/Qwen2.5-32B-Instruct
merge_method: passthrough
dtype: bfloat16
```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mlabonne/BigQwen2.5-52B-Instruct"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```