File size: 2,031 Bytes
124e5cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d61f98
 
 
 
124e5cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: cc-by-nc-4.0
tags:
- merge
- mergekit
- lazymergekit
base_model:
- mlabonne/AlphaMonarch-7B
- mlabonne/AlphaMonarch-7B
- mlabonne/AlphaMonarch-7B
- mlabonne/AlphaMonarch-7B
- mlabonne/AlphaMonarch-7B
---

# FrankenMonarch-7B

FrankenMonarch-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B)
* [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B)
* [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B)
* [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B)
* [mlabonne/AlphaMonarch-7B](https://huggingface.co/mlabonne/AlphaMonarch-7B)

# Quantized versions : 
- [**GGUF**](https://huggingface.co/seyf1elislam/FrankenMonarch-7B-GGUF)


## 🧩 Configuration

```yaml
dtype: float16
merge_method: passthrough
slices:
  - sources:
    - model: mlabonne/AlphaMonarch-7B
      layer_range: [0,9]
  - sources:
    - model: mlabonne/AlphaMonarch-7B
      layer_range: [5,14]
  - sources:
    - model: mlabonne/AlphaMonarch-7B
      layer_range: [10,19]
  - sources:
    - model: mlabonne/AlphaMonarch-7B
      layer_range: [15,24]
  - sources:
    - model: mlabonne/AlphaMonarch-7B
      layer_range: [20,32]
```

## 💻 Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mlabonne/FrankenMonarch-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```