mlabonne commited on
Commit
7b17ba0
1 Parent(s): 323bb5c

Upload folder using huggingface_hub

Browse files
README.md CHANGED
@@ -1,21 +1,105 @@
1
  ---
2
  license: apache-2.0
3
- base_model: ai21labs/Jamba-v0.1
4
  tags:
5
- - trl
6
- - sft
7
  - generated_from_trainer
 
8
  model-index:
9
- - name: Jambatypus
10
  results: []
11
  ---
12
 
13
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
  should probably proofread and complete it, then remove this comment. -->
15
 
16
- # Jambatypus
 
17
 
18
- This model is a fine-tuned version of [ai21labs/Jamba-v0.1](https://huggingface.co/ai21labs/Jamba-v0.1) on an unknown dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
  ## Model description
21
 
@@ -34,24 +118,32 @@ More information needed
34
  ### Training hyperparameters
35
 
36
  The following hyperparameters were used during training:
37
- - learning_rate: 5e-07
38
- - train_batch_size: 2
39
- - eval_batch_size: 8
40
  - seed: 42
41
- - gradient_accumulation_steps: 4
42
  - total_train_batch_size: 8
43
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
- - lr_scheduler_type: linear
45
  - lr_scheduler_warmup_steps: 10
46
  - num_epochs: 1
47
 
48
  ### Training results
49
 
 
 
 
 
 
 
 
50
 
51
 
52
  ### Framework versions
53
 
 
54
  - Transformers 4.40.0.dev0
55
- - Pytorch 2.2.0+cu121
56
  - Datasets 2.18.0
57
- - Tokenizers 0.15.2
 
1
  ---
2
  license: apache-2.0
3
+ library_name: peft
4
  tags:
 
 
5
  - generated_from_trainer
6
+ base_model: ai21labs/Jamba-v0.1
7
  model-index:
8
+ - name: out
9
  results: []
10
  ---
11
 
12
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
  should probably proofread and complete it, then remove this comment. -->
14
 
15
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
 
18
+ axolotl version: `0.4.0`
19
+ ```yaml
20
+
21
+ base_model: ai21labs/Jamba-v0.1
22
+ trust_remote_code: true
23
+
24
+ load_in_8bit: false
25
+ load_in_4bit: true
26
+ strict: false
27
+
28
+ datasets:
29
+ - path: chargoddard/Open-Platypus-Chat
30
+ type: sharegpt
31
+ chat_template: chatml
32
+ dataset_prepared_path:
33
+ val_set_size: 0.01
34
+ output_dir: ./out
35
+ hub_strategy: every_save
36
+
37
+ sequence_len: 4096
38
+ sample_packing: true
39
+ pad_to_sequence_len: true
40
+ eval_sample_packing: false
41
+
42
+ use_wandb: true
43
+ wandb_project: axolotl
44
+ wandb_entity:
45
+ wandb_watch:
46
+ wandb_name: Jambatypus-v0.1
47
+ wandb_log_model:
48
+
49
+ adapter: qlora
50
+ lora_r: 16
51
+ lora_alpha: 32
52
+ lora_dropout: 0.05
53
+ lora_target_linear: true
54
+
55
+ low_cpu_mem_usage: true
56
+ gradient_accumulation_steps: 8
57
+ micro_batch_size: 1
58
+ num_epochs: 1
59
+ optimizer: adamw_bnb_8bit
60
+ adam_beta2: 0.95
61
+ adam_epsilon: 0.00001
62
+ max_grad_norm: 1.0
63
+ lr_scheduler: cosine
64
+ learning_rate: 0.0002
65
+
66
+ train_on_inputs: false
67
+ group_by_length: false
68
+ bf16: auto
69
+ fp16:
70
+ tf32: false
71
+
72
+ gradient_checkpointing: true
73
+ gradient_checkpointing_kwargs:
74
+ use_reentrant: false
75
+ early_stopping_patience:
76
+ resume_from_checkpoint:
77
+ local_rank:
78
+ logging_steps: 1
79
+ xformers_attention:
80
+ flash_attention: true
81
+
82
+ loss_watchdog_threshold: 5.0
83
+ loss_watchdog_patience: 3
84
+
85
+ warmup_steps: 10
86
+ evals_per_epoch: 4
87
+ saves_per_epoch: 4
88
+ save_total_limit: 2
89
+ debug:
90
+ deepspeed:
91
+ weight_decay: 0.0
92
+ special_tokens:
93
+
94
+ ```
95
+
96
+ </details><br>
97
+
98
+ # out
99
+
100
+ This model is a fine-tuned version of [ai21labs/Jamba-v0.1](https://huggingface.co/ai21labs/Jamba-v0.1) on the None dataset.
101
+ It achieves the following results on the evaluation set:
102
+ - Loss: 0.9573
103
 
104
  ## Model description
105
 
 
118
  ### Training hyperparameters
119
 
120
  The following hyperparameters were used during training:
121
+ - learning_rate: 0.0002
122
+ - train_batch_size: 1
123
+ - eval_batch_size: 1
124
  - seed: 42
125
+ - gradient_accumulation_steps: 8
126
  - total_train_batch_size: 8
127
+ - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05
128
+ - lr_scheduler_type: cosine
129
  - lr_scheduler_warmup_steps: 10
130
  - num_epochs: 1
131
 
132
  ### Training results
133
 
134
+ | Training Loss | Epoch | Step | Validation Loss |
135
+ |:-------------:|:-----:|:----:|:---------------:|
136
+ | 0.5915 | 0.0 | 1 | 1.0279 |
137
+ | 0.4249 | 0.25 | 84 | 0.9711 |
138
+ | 0.3911 | 0.5 | 168 | 0.9590 |
139
+ | 0.4655 | 0.75 | 252 | 0.9628 |
140
+ | 0.4569 | 1.0 | 336 | 0.9573 |
141
 
142
 
143
  ### Framework versions
144
 
145
+ - PEFT 0.10.0
146
  - Transformers 4.40.0.dev0
147
+ - Pytorch 2.1.2+cu118
148
  - Datasets 2.18.0
149
+ - Tokenizers 0.15.0
adapter_config.json CHANGED
@@ -3,26 +3,34 @@
3
  "auto_mapping": null,
4
  "base_model_name_or_path": "ai21labs/Jamba-v0.1",
5
  "bias": "none",
6
- "fan_in_fan_out": false,
7
- "inference_mode": false,
8
- "init_lora_weights": false,
9
  "layer_replication": null,
10
  "layers_pattern": null,
11
  "layers_to_transform": null,
12
  "loftq_config": {},
13
- "lora_alpha": 64,
14
- "lora_dropout": 0.001,
15
  "megatron_config": null,
16
  "megatron_core": "megatron.core",
17
  "modules_to_save": null,
18
  "peft_type": "LORA",
19
- "r": 32,
20
  "rank_pattern": {},
21
  "revision": null,
22
  "target_modules": [
23
- "embed_tokens",
 
 
24
  "in_proj",
25
  "out_proj",
 
 
 
 
 
 
26
  "x_proj"
27
  ],
28
  "task_type": "CAUSAL_LM",
 
3
  "auto_mapping": null,
4
  "base_model_name_or_path": "ai21labs/Jamba-v0.1",
5
  "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
  "layer_replication": null,
10
  "layers_pattern": null,
11
  "layers_to_transform": null,
12
  "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
  "megatron_config": null,
16
  "megatron_core": "megatron.core",
17
  "modules_to_save": null,
18
  "peft_type": "LORA",
19
+ "r": 16,
20
  "rank_pattern": {},
21
  "revision": null,
22
  "target_modules": [
23
+ "gate_proj",
24
+ "q_proj",
25
+ "k_proj",
26
  "in_proj",
27
  "out_proj",
28
+ "dt_proj",
29
+ "down_proj",
30
+ "router",
31
+ "up_proj",
32
+ "o_proj",
33
+ "v_proj",
34
  "x_proj"
35
  ],
36
  "task_type": "CAUSAL_LM",
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08b546e88fba6a21cb58cb344345b20a7fe1c09f4e948ca61b90164deb1efdd3
3
+ size 1063383458
checkpoint-252/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ai21labs/Jamba-v0.1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-252/adapter_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "ai21labs/Jamba-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "gate_proj",
24
+ "q_proj",
25
+ "k_proj",
26
+ "in_proj",
27
+ "out_proj",
28
+ "dt_proj",
29
+ "down_proj",
30
+ "router",
31
+ "up_proj",
32
+ "o_proj",
33
+ "v_proj",
34
+ "x_proj"
35
+ ],
36
+ "task_type": "CAUSAL_LM",
37
+ "use_dora": false,
38
+ "use_rslora": false
39
+ }
checkpoint-252/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9148e8f4de6c2968f94c17c863730d0f78ae529d8f9b137af890de19f18ec7d
3
+ size 1062947520
checkpoint-252/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3740beddd3bdf7ae9002977ecc09273be04bf96313d16ca50b7dfe2a0ae849d
3
+ size 534637428
checkpoint-252/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f3c1076d830420e4dca05297f74c03c74429fe2e2837a7c7aff89654669a17d
3
+ size 14244
checkpoint-252/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7dc8b5f86dd96656dfc1be4982fb4e764b1326aadaf793a1f6099b3f4e81510
3
+ size 1064
checkpoint-252/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|startoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|pad|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<|unk|>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-252/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-252/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02fd6530b8ede0eedd8e509fcab32da7b1dd04c8119f8498c787100f13112713
3
+ size 1124742
checkpoint-252/tokenizer_config.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<|pad|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<|startoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "<|endoftext|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "3": {
30
+ "content": "<|unk|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ }
37
+ },
38
+ "bos_token": "<|startoftext|>",
39
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
40
+ "clean_up_tokenization_spaces": false,
41
+ "eos_token": "<|endoftext|>",
42
+ "model_max_length": 1000000000000000019884624838656,
43
+ "pad_token": "<|pad|>",
44
+ "spaces_between_special_tokens": false,
45
+ "tokenizer_class": "LlamaTokenizer",
46
+ "unk_token": "<|unk|>",
47
+ "use_default_system_prompt": false
48
+ }
checkpoint-252/trainer_state.json ADDED
@@ -0,0 +1,1817 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.7486075009283327,
5
+ "eval_steps": 84,
6
+ "global_step": 252,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "grad_norm": 0.297607958316803,
14
+ "learning_rate": 2e-05,
15
+ "loss": 0.5915,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0,
20
+ "eval_loss": 1.027875304222107,
21
+ "eval_runtime": 319.0994,
22
+ "eval_samples_per_second": 0.78,
23
+ "eval_steps_per_second": 0.78,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.01,
28
+ "grad_norm": 0.3444654643535614,
29
+ "learning_rate": 4e-05,
30
+ "loss": 0.5941,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.01,
35
+ "grad_norm": 0.31323298811912537,
36
+ "learning_rate": 6e-05,
37
+ "loss": 0.5986,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.01,
42
+ "grad_norm": 0.3083553612232208,
43
+ "learning_rate": 8e-05,
44
+ "loss": 0.589,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.01,
49
+ "grad_norm": 0.3427445590496063,
50
+ "learning_rate": 0.0001,
51
+ "loss": 0.6559,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.02,
56
+ "grad_norm": 0.26026275753974915,
57
+ "learning_rate": 0.00012,
58
+ "loss": 0.6444,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.02,
63
+ "grad_norm": 0.22449900209903717,
64
+ "learning_rate": 0.00014,
65
+ "loss": 0.5621,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.02,
70
+ "grad_norm": 0.18667733669281006,
71
+ "learning_rate": 0.00016,
72
+ "loss": 0.574,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.03,
77
+ "grad_norm": 0.1876465231180191,
78
+ "learning_rate": 0.00018,
79
+ "loss": 0.6105,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.03,
84
+ "grad_norm": 0.2330338954925537,
85
+ "learning_rate": 0.0002,
86
+ "loss": 0.5793,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.03,
91
+ "grad_norm": 0.18704406917095184,
92
+ "learning_rate": 0.00019999535665248002,
93
+ "loss": 0.5431,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.04,
98
+ "grad_norm": 0.20125611126422882,
99
+ "learning_rate": 0.0001999814270411335,
100
+ "loss": 0.5219,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.04,
105
+ "grad_norm": 0.17054004967212677,
106
+ "learning_rate": 0.000199958212459561,
107
+ "loss": 0.5022,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.04,
112
+ "grad_norm": 0.20665132999420166,
113
+ "learning_rate": 0.00019992571506363,
114
+ "loss": 0.5907,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.04,
119
+ "grad_norm": 0.21675613522529602,
120
+ "learning_rate": 0.00019988393787127441,
121
+ "loss": 0.4667,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.05,
126
+ "grad_norm": 0.20350293815135956,
127
+ "learning_rate": 0.0001998328847622148,
128
+ "loss": 0.5533,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.05,
133
+ "grad_norm": 0.18382889032363892,
134
+ "learning_rate": 0.00019977256047759765,
135
+ "loss": 0.5022,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.05,
140
+ "grad_norm": 0.1696760207414627,
141
+ "learning_rate": 0.00019970297061955533,
142
+ "loss": 0.5381,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.06,
147
+ "grad_norm": 0.19592055678367615,
148
+ "learning_rate": 0.00019962412165068573,
149
+ "loss": 0.5733,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.06,
154
+ "grad_norm": 0.17972029745578766,
155
+ "learning_rate": 0.00019953602089345217,
156
+ "loss": 0.5891,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.06,
161
+ "grad_norm": 0.19014880061149597,
162
+ "learning_rate": 0.0001994386765295032,
163
+ "loss": 0.5629,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.07,
168
+ "grad_norm": 0.15824897587299347,
169
+ "learning_rate": 0.00019933209759891317,
170
+ "loss": 0.5627,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.07,
175
+ "grad_norm": 0.17133353650569916,
176
+ "learning_rate": 0.00019921629399934223,
177
+ "loss": 0.5542,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.07,
182
+ "grad_norm": 0.13738161325454712,
183
+ "learning_rate": 0.00019909127648511755,
184
+ "loss": 0.4443,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.07,
189
+ "grad_norm": 0.16617180407047272,
190
+ "learning_rate": 0.0001989570566662345,
191
+ "loss": 0.5469,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.08,
196
+ "grad_norm": 0.13969440758228302,
197
+ "learning_rate": 0.00019881364700727823,
198
+ "loss": 0.5141,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.08,
203
+ "grad_norm": 0.1598738580942154,
204
+ "learning_rate": 0.0001986610608262665,
205
+ "loss": 0.5598,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.08,
210
+ "grad_norm": 0.14080321788787842,
211
+ "learning_rate": 0.00019849931229341258,
212
+ "loss": 0.4978,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.09,
217
+ "grad_norm": 0.16124503314495087,
218
+ "learning_rate": 0.00019832841642980945,
219
+ "loss": 0.613,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.09,
224
+ "grad_norm": 0.1537931114435196,
225
+ "learning_rate": 0.00019814838910603481,
226
+ "loss": 0.4913,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.09,
231
+ "grad_norm": 0.16199100017547607,
232
+ "learning_rate": 0.00019795924704067721,
233
+ "loss": 0.4872,
234
+ "step": 31
235
+ },
236
+ {
237
+ "epoch": 0.1,
238
+ "grad_norm": 0.13554096221923828,
239
+ "learning_rate": 0.00019776100779878345,
240
+ "loss": 0.4609,
241
+ "step": 32
242
+ },
243
+ {
244
+ "epoch": 0.1,
245
+ "grad_norm": 0.18090932071208954,
246
+ "learning_rate": 0.00019755368979022732,
247
+ "loss": 0.4582,
248
+ "step": 33
249
+ },
250
+ {
251
+ "epoch": 0.1,
252
+ "grad_norm": 0.14535771310329437,
253
+ "learning_rate": 0.00019733731226800015,
254
+ "loss": 0.5359,
255
+ "step": 34
256
+ },
257
+ {
258
+ "epoch": 0.1,
259
+ "grad_norm": 0.1427253782749176,
260
+ "learning_rate": 0.00019711189532642243,
261
+ "loss": 0.5324,
262
+ "step": 35
263
+ },
264
+ {
265
+ "epoch": 0.11,
266
+ "grad_norm": 0.13935472071170807,
267
+ "learning_rate": 0.00019687745989927823,
268
+ "loss": 0.5106,
269
+ "step": 36
270
+ },
271
+ {
272
+ "epoch": 0.11,
273
+ "grad_norm": 0.1388338804244995,
274
+ "learning_rate": 0.00019663402775787066,
275
+ "loss": 0.5634,
276
+ "step": 37
277
+ },
278
+ {
279
+ "epoch": 0.11,
280
+ "grad_norm": 0.13948731124401093,
281
+ "learning_rate": 0.00019638162150900027,
282
+ "loss": 0.5058,
283
+ "step": 38
284
+ },
285
+ {
286
+ "epoch": 0.12,
287
+ "grad_norm": 0.13687050342559814,
288
+ "learning_rate": 0.00019612026459286578,
289
+ "loss": 0.5806,
290
+ "step": 39
291
+ },
292
+ {
293
+ "epoch": 0.12,
294
+ "grad_norm": 0.1311887949705124,
295
+ "learning_rate": 0.00019584998128088684,
296
+ "loss": 0.4552,
297
+ "step": 40
298
+ },
299
+ {
300
+ "epoch": 0.12,
301
+ "grad_norm": 0.15644784271717072,
302
+ "learning_rate": 0.0001955707966734505,
303
+ "loss": 0.4424,
304
+ "step": 41
305
+ },
306
+ {
307
+ "epoch": 0.12,
308
+ "grad_norm": 0.14039994776248932,
309
+ "learning_rate": 0.00019528273669757972,
310
+ "loss": 0.4905,
311
+ "step": 42
312
+ },
313
+ {
314
+ "epoch": 0.13,
315
+ "grad_norm": 0.14709696173667908,
316
+ "learning_rate": 0.0001949858281045261,
317
+ "loss": 0.5655,
318
+ "step": 43
319
+ },
320
+ {
321
+ "epoch": 0.13,
322
+ "grad_norm": 0.1661250740289688,
323
+ "learning_rate": 0.00019468009846728513,
324
+ "loss": 0.5141,
325
+ "step": 44
326
+ },
327
+ {
328
+ "epoch": 0.13,
329
+ "grad_norm": 0.3046470582485199,
330
+ "learning_rate": 0.00019436557617803595,
331
+ "loss": 0.4792,
332
+ "step": 45
333
+ },
334
+ {
335
+ "epoch": 0.14,
336
+ "grad_norm": 0.15159915387630463,
337
+ "learning_rate": 0.00019404229044550433,
338
+ "loss": 0.5077,
339
+ "step": 46
340
+ },
341
+ {
342
+ "epoch": 0.14,
343
+ "grad_norm": 0.15115606784820557,
344
+ "learning_rate": 0.00019371027129225042,
345
+ "loss": 0.4915,
346
+ "step": 47
347
+ },
348
+ {
349
+ "epoch": 0.14,
350
+ "grad_norm": 0.14040274918079376,
351
+ "learning_rate": 0.0001933695495518804,
352
+ "loss": 0.5048,
353
+ "step": 48
354
+ },
355
+ {
356
+ "epoch": 0.15,
357
+ "grad_norm": 0.14947518706321716,
358
+ "learning_rate": 0.00019302015686618326,
359
+ "loss": 0.5124,
360
+ "step": 49
361
+ },
362
+ {
363
+ "epoch": 0.15,
364
+ "grad_norm": 0.13805006444454193,
365
+ "learning_rate": 0.0001926621256821922,
366
+ "loss": 0.4455,
367
+ "step": 50
368
+ },
369
+ {
370
+ "epoch": 0.15,
371
+ "grad_norm": 0.14188264310359955,
372
+ "learning_rate": 0.00019229548924917146,
373
+ "loss": 0.5244,
374
+ "step": 51
375
+ },
376
+ {
377
+ "epoch": 0.15,
378
+ "grad_norm": 0.1314387321472168,
379
+ "learning_rate": 0.00019192028161552847,
380
+ "loss": 0.5251,
381
+ "step": 52
382
+ },
383
+ {
384
+ "epoch": 0.16,
385
+ "grad_norm": 0.1659722477197647,
386
+ "learning_rate": 0.0001915365376256519,
387
+ "loss": 0.4851,
388
+ "step": 53
389
+ },
390
+ {
391
+ "epoch": 0.16,
392
+ "grad_norm": 0.1405472755432129,
393
+ "learning_rate": 0.00019114429291667583,
394
+ "loss": 0.463,
395
+ "step": 54
396
+ },
397
+ {
398
+ "epoch": 0.16,
399
+ "grad_norm": 0.14347247779369354,
400
+ "learning_rate": 0.00019074358391517023,
401
+ "loss": 0.4491,
402
+ "step": 55
403
+ },
404
+ {
405
+ "epoch": 0.17,
406
+ "grad_norm": 0.14897900819778442,
407
+ "learning_rate": 0.00019033444783375804,
408
+ "loss": 0.4942,
409
+ "step": 56
410
+ },
411
+ {
412
+ "epoch": 0.17,
413
+ "grad_norm": 0.13556955754756927,
414
+ "learning_rate": 0.00018991692266765947,
415
+ "loss": 0.4755,
416
+ "step": 57
417
+ },
418
+ {
419
+ "epoch": 0.17,
420
+ "grad_norm": 0.16432009637355804,
421
+ "learning_rate": 0.00018949104719116332,
422
+ "loss": 0.5747,
423
+ "step": 58
424
+ },
425
+ {
426
+ "epoch": 0.18,
427
+ "grad_norm": 0.15541689097881317,
428
+ "learning_rate": 0.00018905686095402647,
429
+ "loss": 0.533,
430
+ "step": 59
431
+ },
432
+ {
433
+ "epoch": 0.18,
434
+ "grad_norm": 0.1607791632413864,
435
+ "learning_rate": 0.0001886144042778006,
436
+ "loss": 0.556,
437
+ "step": 60
438
+ },
439
+ {
440
+ "epoch": 0.18,
441
+ "grad_norm": 0.15379983186721802,
442
+ "learning_rate": 0.00018816371825208789,
443
+ "loss": 0.4549,
444
+ "step": 61
445
+ },
446
+ {
447
+ "epoch": 0.18,
448
+ "grad_norm": 0.15419824421405792,
449
+ "learning_rate": 0.0001877048447307252,
450
+ "loss": 0.4933,
451
+ "step": 62
452
+ },
453
+ {
454
+ "epoch": 0.19,
455
+ "grad_norm": 0.1353635936975479,
456
+ "learning_rate": 0.00018723782632789701,
457
+ "loss": 0.393,
458
+ "step": 63
459
+ },
460
+ {
461
+ "epoch": 0.19,
462
+ "grad_norm": 0.15725383162498474,
463
+ "learning_rate": 0.00018676270641417822,
464
+ "loss": 0.4671,
465
+ "step": 64
466
+ },
467
+ {
468
+ "epoch": 0.19,
469
+ "grad_norm": 0.12909093499183655,
470
+ "learning_rate": 0.0001862795291125063,
471
+ "loss": 0.484,
472
+ "step": 65
473
+ },
474
+ {
475
+ "epoch": 0.2,
476
+ "grad_norm": 0.14394541084766388,
477
+ "learning_rate": 0.0001857883392940837,
478
+ "loss": 0.5232,
479
+ "step": 66
480
+ },
481
+ {
482
+ "epoch": 0.2,
483
+ "grad_norm": 0.1671515554189682,
484
+ "learning_rate": 0.000185289182574211,
485
+ "loss": 0.4683,
486
+ "step": 67
487
+ },
488
+ {
489
+ "epoch": 0.2,
490
+ "grad_norm": 0.1658957600593567,
491
+ "learning_rate": 0.0001847821053080505,
492
+ "loss": 0.5072,
493
+ "step": 68
494
+ },
495
+ {
496
+ "epoch": 0.2,
497
+ "grad_norm": 0.15142019093036652,
498
+ "learning_rate": 0.00018426715458632153,
499
+ "loss": 0.5328,
500
+ "step": 69
501
+ },
502
+ {
503
+ "epoch": 0.21,
504
+ "grad_norm": 0.141921728849411,
505
+ "learning_rate": 0.00018374437823092724,
506
+ "loss": 0.4387,
507
+ "step": 70
508
+ },
509
+ {
510
+ "epoch": 0.21,
511
+ "grad_norm": 0.1730872541666031,
512
+ "learning_rate": 0.00018321382479051347,
513
+ "loss": 0.5323,
514
+ "step": 71
515
+ },
516
+ {
517
+ "epoch": 0.21,
518
+ "grad_norm": 0.13589338958263397,
519
+ "learning_rate": 0.00018267554353596025,
520
+ "loss": 0.4217,
521
+ "step": 72
522
+ },
523
+ {
524
+ "epoch": 0.22,
525
+ "grad_norm": 0.16519547998905182,
526
+ "learning_rate": 0.0001821295844558062,
527
+ "loss": 0.4498,
528
+ "step": 73
529
+ },
530
+ {
531
+ "epoch": 0.22,
532
+ "grad_norm": 0.16089589893817902,
533
+ "learning_rate": 0.0001815759982516061,
534
+ "loss": 0.5204,
535
+ "step": 74
536
+ },
537
+ {
538
+ "epoch": 0.22,
539
+ "grad_norm": 0.16409483551979065,
540
+ "learning_rate": 0.00018101483633322255,
541
+ "loss": 0.4511,
542
+ "step": 75
543
+ },
544
+ {
545
+ "epoch": 0.23,
546
+ "grad_norm": 0.16179721057415009,
547
+ "learning_rate": 0.00018044615081405153,
548
+ "loss": 0.5866,
549
+ "step": 76
550
+ },
551
+ {
552
+ "epoch": 0.23,
553
+ "grad_norm": 0.15137337148189545,
554
+ "learning_rate": 0.00017986999450618295,
555
+ "loss": 0.4728,
556
+ "step": 77
557
+ },
558
+ {
559
+ "epoch": 0.23,
560
+ "grad_norm": 0.14265336096286774,
561
+ "learning_rate": 0.00017928642091549613,
562
+ "loss": 0.4491,
563
+ "step": 78
564
+ },
565
+ {
566
+ "epoch": 0.23,
567
+ "grad_norm": 0.14860045909881592,
568
+ "learning_rate": 0.00017869548423669077,
569
+ "loss": 0.4734,
570
+ "step": 79
571
+ },
572
+ {
573
+ "epoch": 0.24,
574
+ "grad_norm": 0.14790605008602142,
575
+ "learning_rate": 0.00017809723934825405,
576
+ "loss": 0.533,
577
+ "step": 80
578
+ },
579
+ {
580
+ "epoch": 0.24,
581
+ "grad_norm": 0.1581815779209137,
582
+ "learning_rate": 0.00017749174180736442,
583
+ "loss": 0.4661,
584
+ "step": 81
585
+ },
586
+ {
587
+ "epoch": 0.24,
588
+ "grad_norm": 0.1520436853170395,
589
+ "learning_rate": 0.00017687904784473188,
590
+ "loss": 0.5292,
591
+ "step": 82
592
+ },
593
+ {
594
+ "epoch": 0.25,
595
+ "grad_norm": 0.15341107547283173,
596
+ "learning_rate": 0.00017625921435937637,
597
+ "loss": 0.5062,
598
+ "step": 83
599
+ },
600
+ {
601
+ "epoch": 0.25,
602
+ "grad_norm": 0.14248648285865784,
603
+ "learning_rate": 0.00017563229891334338,
604
+ "loss": 0.4249,
605
+ "step": 84
606
+ },
607
+ {
608
+ "epoch": 0.25,
609
+ "eval_loss": 0.9711415767669678,
610
+ "eval_runtime": 320.5008,
611
+ "eval_samples_per_second": 0.777,
612
+ "eval_steps_per_second": 0.777,
613
+ "step": 84
614
+ },
615
+ {
616
+ "epoch": 0.25,
617
+ "grad_norm": 0.16506022214889526,
618
+ "learning_rate": 0.00017499835972635856,
619
+ "loss": 0.4873,
620
+ "step": 85
621
+ },
622
+ {
623
+ "epoch": 0.26,
624
+ "grad_norm": 0.14895877242088318,
625
+ "learning_rate": 0.00017435745567042095,
626
+ "loss": 0.4774,
627
+ "step": 86
628
+ },
629
+ {
630
+ "epoch": 0.26,
631
+ "grad_norm": 0.25245463848114014,
632
+ "learning_rate": 0.00017370964626433567,
633
+ "loss": 0.5324,
634
+ "step": 87
635
+ },
636
+ {
637
+ "epoch": 0.26,
638
+ "grad_norm": 0.14706483483314514,
639
+ "learning_rate": 0.0001730549916681868,
640
+ "loss": 0.4536,
641
+ "step": 88
642
+ },
643
+ {
644
+ "epoch": 0.26,
645
+ "grad_norm": 0.14856815338134766,
646
+ "learning_rate": 0.00017239355267775018,
647
+ "loss": 0.4576,
648
+ "step": 89
649
+ },
650
+ {
651
+ "epoch": 0.27,
652
+ "grad_norm": 0.1513276994228363,
653
+ "learning_rate": 0.0001717253907188477,
654
+ "loss": 0.4286,
655
+ "step": 90
656
+ },
657
+ {
658
+ "epoch": 0.27,
659
+ "grad_norm": 0.1549597978591919,
660
+ "learning_rate": 0.00017105056784164294,
661
+ "loss": 0.4554,
662
+ "step": 91
663
+ },
664
+ {
665
+ "epoch": 0.27,
666
+ "grad_norm": 0.15850332379341125,
667
+ "learning_rate": 0.00017036914671487852,
668
+ "loss": 0.454,
669
+ "step": 92
670
+ },
671
+ {
672
+ "epoch": 0.28,
673
+ "grad_norm": 0.15920379757881165,
674
+ "learning_rate": 0.00016968119062005642,
675
+ "loss": 0.5333,
676
+ "step": 93
677
+ },
678
+ {
679
+ "epoch": 0.28,
680
+ "grad_norm": 0.1652740240097046,
681
+ "learning_rate": 0.00016898676344556118,
682
+ "loss": 0.5272,
683
+ "step": 94
684
+ },
685
+ {
686
+ "epoch": 0.28,
687
+ "grad_norm": 0.15505805611610413,
688
+ "learning_rate": 0.00016828592968072678,
689
+ "loss": 0.5429,
690
+ "step": 95
691
+ },
692
+ {
693
+ "epoch": 0.29,
694
+ "grad_norm": 0.16118398308753967,
695
+ "learning_rate": 0.00016757875440984768,
696
+ "loss": 0.4782,
697
+ "step": 96
698
+ },
699
+ {
700
+ "epoch": 0.29,
701
+ "grad_norm": 0.1549789011478424,
702
+ "learning_rate": 0.0001668653033061347,
703
+ "loss": 0.4594,
704
+ "step": 97
705
+ },
706
+ {
707
+ "epoch": 0.29,
708
+ "grad_norm": 0.1643325537443161,
709
+ "learning_rate": 0.00016614564262561608,
710
+ "loss": 0.5086,
711
+ "step": 98
712
+ },
713
+ {
714
+ "epoch": 0.29,
715
+ "grad_norm": 0.1949179321527481,
716
+ "learning_rate": 0.0001654198392009846,
717
+ "loss": 0.4052,
718
+ "step": 99
719
+ },
720
+ {
721
+ "epoch": 0.3,
722
+ "grad_norm": 0.1303270012140274,
723
+ "learning_rate": 0.0001646879604353908,
724
+ "loss": 0.4845,
725
+ "step": 100
726
+ },
727
+ {
728
+ "epoch": 0.3,
729
+ "grad_norm": 0.13640670478343964,
730
+ "learning_rate": 0.00016395007429618382,
731
+ "loss": 0.4459,
732
+ "step": 101
733
+ },
734
+ {
735
+ "epoch": 0.3,
736
+ "grad_norm": 0.18252772092819214,
737
+ "learning_rate": 0.00016320624930859904,
738
+ "loss": 0.523,
739
+ "step": 102
740
+ },
741
+ {
742
+ "epoch": 0.31,
743
+ "grad_norm": 0.16342373192310333,
744
+ "learning_rate": 0.00016245655454939474,
745
+ "loss": 0.4714,
746
+ "step": 103
747
+ },
748
+ {
749
+ "epoch": 0.31,
750
+ "grad_norm": 0.1418078988790512,
751
+ "learning_rate": 0.00016170105964043695,
752
+ "loss": 0.4841,
753
+ "step": 104
754
+ },
755
+ {
756
+ "epoch": 0.31,
757
+ "grad_norm": 0.15758009254932404,
758
+ "learning_rate": 0.0001609398347422339,
759
+ "loss": 0.3911,
760
+ "step": 105
761
+ },
762
+ {
763
+ "epoch": 0.31,
764
+ "grad_norm": 0.1476665586233139,
765
+ "learning_rate": 0.00016017295054742046,
766
+ "loss": 0.3962,
767
+ "step": 106
768
+ },
769
+ {
770
+ "epoch": 0.32,
771
+ "grad_norm": 0.14230811595916748,
772
+ "learning_rate": 0.00015940047827419303,
773
+ "loss": 0.4391,
774
+ "step": 107
775
+ },
776
+ {
777
+ "epoch": 0.32,
778
+ "grad_norm": 0.15269385278224945,
779
+ "learning_rate": 0.00015862248965969604,
780
+ "loss": 0.4992,
781
+ "step": 108
782
+ },
783
+ {
784
+ "epoch": 0.32,
785
+ "grad_norm": 0.14437031745910645,
786
+ "learning_rate": 0.00015783905695335946,
787
+ "loss": 0.4768,
788
+ "step": 109
789
+ },
790
+ {
791
+ "epoch": 0.33,
792
+ "grad_norm": 0.1448802649974823,
793
+ "learning_rate": 0.0001570502529101896,
794
+ "loss": 0.4469,
795
+ "step": 110
796
+ },
797
+ {
798
+ "epoch": 0.33,
799
+ "grad_norm": 0.1571648269891739,
800
+ "learning_rate": 0.00015625615078401244,
801
+ "loss": 0.4048,
802
+ "step": 111
803
+ },
804
+ {
805
+ "epoch": 0.33,
806
+ "grad_norm": 0.1563793420791626,
807
+ "learning_rate": 0.00015545682432067067,
808
+ "loss": 0.4518,
809
+ "step": 112
810
+ },
811
+ {
812
+ "epoch": 0.34,
813
+ "grad_norm": 0.1441984921693802,
814
+ "learning_rate": 0.0001546523477511754,
815
+ "loss": 0.497,
816
+ "step": 113
817
+ },
818
+ {
819
+ "epoch": 0.34,
820
+ "grad_norm": 0.13513916730880737,
821
+ "learning_rate": 0.00015384279578481221,
822
+ "loss": 0.4923,
823
+ "step": 114
824
+ },
825
+ {
826
+ "epoch": 0.34,
827
+ "grad_norm": 0.1501740962266922,
828
+ "learning_rate": 0.00015302824360220353,
829
+ "loss": 0.4701,
830
+ "step": 115
831
+ },
832
+ {
833
+ "epoch": 0.34,
834
+ "grad_norm": 0.2020605355501175,
835
+ "learning_rate": 0.00015220876684832638,
836
+ "loss": 0.4122,
837
+ "step": 116
838
+ },
839
+ {
840
+ "epoch": 0.35,
841
+ "grad_norm": 0.15191146731376648,
842
+ "learning_rate": 0.0001513844416254879,
843
+ "loss": 0.4432,
844
+ "step": 117
845
+ },
846
+ {
847
+ "epoch": 0.35,
848
+ "grad_norm": 0.1627548784017563,
849
+ "learning_rate": 0.00015055534448625766,
850
+ "loss": 0.4779,
851
+ "step": 118
852
+ },
853
+ {
854
+ "epoch": 0.35,
855
+ "grad_norm": 0.14043453335762024,
856
+ "learning_rate": 0.00014972155242635852,
857
+ "loss": 0.471,
858
+ "step": 119
859
+ },
860
+ {
861
+ "epoch": 0.36,
862
+ "grad_norm": 0.16092036664485931,
863
+ "learning_rate": 0.0001488831428775164,
864
+ "loss": 0.4543,
865
+ "step": 120
866
+ },
867
+ {
868
+ "epoch": 0.36,
869
+ "grad_norm": 0.1478460729122162,
870
+ "learning_rate": 0.00014804019370026926,
871
+ "loss": 0.4521,
872
+ "step": 121
873
+ },
874
+ {
875
+ "epoch": 0.36,
876
+ "grad_norm": 0.15067800879478455,
877
+ "learning_rate": 0.00014719278317673655,
878
+ "loss": 0.5665,
879
+ "step": 122
880
+ },
881
+ {
882
+ "epoch": 0.37,
883
+ "grad_norm": 0.16037791967391968,
884
+ "learning_rate": 0.0001463409900033493,
885
+ "loss": 0.5198,
886
+ "step": 123
887
+ },
888
+ {
889
+ "epoch": 0.37,
890
+ "grad_norm": 0.15850840508937836,
891
+ "learning_rate": 0.00014548489328354195,
892
+ "loss": 0.5183,
893
+ "step": 124
894
+ },
895
+ {
896
+ "epoch": 0.37,
897
+ "grad_norm": 0.13782666623592377,
898
+ "learning_rate": 0.00014462457252040607,
899
+ "loss": 0.4415,
900
+ "step": 125
901
+ },
902
+ {
903
+ "epoch": 0.37,
904
+ "grad_norm": 0.17566777765750885,
905
+ "learning_rate": 0.00014376010760930728,
906
+ "loss": 0.5166,
907
+ "step": 126
908
+ },
909
+ {
910
+ "epoch": 0.38,
911
+ "grad_norm": 0.14671465754508972,
912
+ "learning_rate": 0.00014289157883046568,
913
+ "loss": 0.454,
914
+ "step": 127
915
+ },
916
+ {
917
+ "epoch": 0.38,
918
+ "grad_norm": 0.14827768504619598,
919
+ "learning_rate": 0.0001420190668415002,
920
+ "loss": 0.3743,
921
+ "step": 128
922
+ },
923
+ {
924
+ "epoch": 0.38,
925
+ "grad_norm": 0.16858412325382233,
926
+ "learning_rate": 0.00014114265266993846,
927
+ "loss": 0.5204,
928
+ "step": 129
929
+ },
930
+ {
931
+ "epoch": 0.39,
932
+ "grad_norm": 0.14838969707489014,
933
+ "learning_rate": 0.00014026241770569197,
934
+ "loss": 0.5072,
935
+ "step": 130
936
+ },
937
+ {
938
+ "epoch": 0.39,
939
+ "grad_norm": 0.1676333248615265,
940
+ "learning_rate": 0.00013937844369349734,
941
+ "loss": 0.5026,
942
+ "step": 131
943
+ },
944
+ {
945
+ "epoch": 0.39,
946
+ "grad_norm": 0.1548876315355301,
947
+ "learning_rate": 0.00013849081272532544,
948
+ "loss": 0.4393,
949
+ "step": 132
950
+ },
951
+ {
952
+ "epoch": 0.4,
953
+ "grad_norm": 0.16387146711349487,
954
+ "learning_rate": 0.00013759960723275732,
955
+ "loss": 0.4899,
956
+ "step": 133
957
+ },
958
+ {
959
+ "epoch": 0.4,
960
+ "grad_norm": 0.15013404190540314,
961
+ "learning_rate": 0.00013670490997932922,
962
+ "loss": 0.4398,
963
+ "step": 134
964
+ },
965
+ {
966
+ "epoch": 0.4,
967
+ "grad_norm": 0.1466226577758789,
968
+ "learning_rate": 0.00013580680405284664,
969
+ "loss": 0.5087,
970
+ "step": 135
971
+ },
972
+ {
973
+ "epoch": 0.4,
974
+ "grad_norm": 0.15578770637512207,
975
+ "learning_rate": 0.00013490537285766808,
976
+ "loss": 0.4662,
977
+ "step": 136
978
+ },
979
+ {
980
+ "epoch": 0.41,
981
+ "grad_norm": 0.16825653612613678,
982
+ "learning_rate": 0.00013400070010695966,
983
+ "loss": 0.4826,
984
+ "step": 137
985
+ },
986
+ {
987
+ "epoch": 0.41,
988
+ "grad_norm": 0.15624648332595825,
989
+ "learning_rate": 0.00013309286981492085,
990
+ "loss": 0.4818,
991
+ "step": 138
992
+ },
993
+ {
994
+ "epoch": 0.41,
995
+ "grad_norm": 0.16185308992862701,
996
+ "learning_rate": 0.00013218196628898233,
997
+ "loss": 0.4848,
998
+ "step": 139
999
+ },
1000
+ {
1001
+ "epoch": 0.42,
1002
+ "grad_norm": 0.15799778699874878,
1003
+ "learning_rate": 0.00013126807412197665,
1004
+ "loss": 0.4456,
1005
+ "step": 140
1006
+ },
1007
+ {
1008
+ "epoch": 0.42,
1009
+ "grad_norm": 0.15358638763427734,
1010
+ "learning_rate": 0.0001303512781842824,
1011
+ "loss": 0.434,
1012
+ "step": 141
1013
+ },
1014
+ {
1015
+ "epoch": 0.42,
1016
+ "grad_norm": 0.14526773989200592,
1017
+ "learning_rate": 0.00012943166361594242,
1018
+ "loss": 0.4944,
1019
+ "step": 142
1020
+ },
1021
+ {
1022
+ "epoch": 0.42,
1023
+ "grad_norm": 0.1717992126941681,
1024
+ "learning_rate": 0.00012850931581875723,
1025
+ "loss": 0.4966,
1026
+ "step": 143
1027
+ },
1028
+ {
1029
+ "epoch": 0.43,
1030
+ "grad_norm": 0.14694097638130188,
1031
+ "learning_rate": 0.00012758432044835392,
1032
+ "loss": 0.4055,
1033
+ "step": 144
1034
+ },
1035
+ {
1036
+ "epoch": 0.43,
1037
+ "grad_norm": 0.17159771919250488,
1038
+ "learning_rate": 0.0001266567634062317,
1039
+ "loss": 0.4455,
1040
+ "step": 145
1041
+ },
1042
+ {
1043
+ "epoch": 0.43,
1044
+ "grad_norm": 0.16740797460079193,
1045
+ "learning_rate": 0.0001257267308317845,
1046
+ "loss": 0.3732,
1047
+ "step": 146
1048
+ },
1049
+ {
1050
+ "epoch": 0.44,
1051
+ "grad_norm": 0.14464697241783142,
1052
+ "learning_rate": 0.00012479430909430108,
1053
+ "loss": 0.4976,
1054
+ "step": 147
1055
+ },
1056
+ {
1057
+ "epoch": 0.44,
1058
+ "grad_norm": 0.15393030643463135,
1059
+ "learning_rate": 0.00012385958478494487,
1060
+ "loss": 0.3653,
1061
+ "step": 148
1062
+ },
1063
+ {
1064
+ "epoch": 0.44,
1065
+ "grad_norm": 0.15888682007789612,
1066
+ "learning_rate": 0.00012292264470871182,
1067
+ "loss": 0.4966,
1068
+ "step": 149
1069
+ },
1070
+ {
1071
+ "epoch": 0.45,
1072
+ "grad_norm": 0.14429794251918793,
1073
+ "learning_rate": 0.00012198357587636957,
1074
+ "loss": 0.4821,
1075
+ "step": 150
1076
+ },
1077
+ {
1078
+ "epoch": 0.45,
1079
+ "grad_norm": 0.15093272924423218,
1080
+ "learning_rate": 0.00012104246549637683,
1081
+ "loss": 0.4431,
1082
+ "step": 151
1083
+ },
1084
+ {
1085
+ "epoch": 0.45,
1086
+ "grad_norm": 0.16575871407985687,
1087
+ "learning_rate": 0.00012009940096678452,
1088
+ "loss": 0.4903,
1089
+ "step": 152
1090
+ },
1091
+ {
1092
+ "epoch": 0.45,
1093
+ "grad_norm": 0.15208427608013153,
1094
+ "learning_rate": 0.00011915446986711953,
1095
+ "loss": 0.4465,
1096
+ "step": 153
1097
+ },
1098
+ {
1099
+ "epoch": 0.46,
1100
+ "grad_norm": 0.16902336478233337,
1101
+ "learning_rate": 0.00011820775995025147,
1102
+ "loss": 0.4997,
1103
+ "step": 154
1104
+ },
1105
+ {
1106
+ "epoch": 0.46,
1107
+ "grad_norm": 0.1612280309200287,
1108
+ "learning_rate": 0.0001172593591342432,
1109
+ "loss": 0.4258,
1110
+ "step": 155
1111
+ },
1112
+ {
1113
+ "epoch": 0.46,
1114
+ "grad_norm": 0.14114782214164734,
1115
+ "learning_rate": 0.00011630935549418627,
1116
+ "loss": 0.5262,
1117
+ "step": 156
1118
+ },
1119
+ {
1120
+ "epoch": 0.47,
1121
+ "grad_norm": 0.16275247931480408,
1122
+ "learning_rate": 0.00011535783725402163,
1123
+ "loss": 0.4403,
1124
+ "step": 157
1125
+ },
1126
+ {
1127
+ "epoch": 0.47,
1128
+ "grad_norm": 0.1442529857158661,
1129
+ "learning_rate": 0.00011440489277834645,
1130
+ "loss": 0.479,
1131
+ "step": 158
1132
+ },
1133
+ {
1134
+ "epoch": 0.47,
1135
+ "grad_norm": 0.15231800079345703,
1136
+ "learning_rate": 0.0001134506105642081,
1137
+ "loss": 0.4856,
1138
+ "step": 159
1139
+ },
1140
+ {
1141
+ "epoch": 0.48,
1142
+ "grad_norm": 0.14390550553798676,
1143
+ "learning_rate": 0.00011249507923288562,
1144
+ "loss": 0.3665,
1145
+ "step": 160
1146
+ },
1147
+ {
1148
+ "epoch": 0.48,
1149
+ "grad_norm": 0.19076046347618103,
1150
+ "learning_rate": 0.0001115383875216598,
1151
+ "loss": 0.4423,
1152
+ "step": 161
1153
+ },
1154
+ {
1155
+ "epoch": 0.48,
1156
+ "grad_norm": 0.16523972153663635,
1157
+ "learning_rate": 0.00011058062427557229,
1158
+ "loss": 0.5816,
1159
+ "step": 162
1160
+ },
1161
+ {
1162
+ "epoch": 0.48,
1163
+ "grad_norm": 0.1553642749786377,
1164
+ "learning_rate": 0.00010962187843917497,
1165
+ "loss": 0.4793,
1166
+ "step": 163
1167
+ },
1168
+ {
1169
+ "epoch": 0.49,
1170
+ "grad_norm": 0.14419597387313843,
1171
+ "learning_rate": 0.0001086622390482699,
1172
+ "loss": 0.4862,
1173
+ "step": 164
1174
+ },
1175
+ {
1176
+ "epoch": 0.49,
1177
+ "grad_norm": 0.14601647853851318,
1178
+ "learning_rate": 0.00010770179522164079,
1179
+ "loss": 0.4589,
1180
+ "step": 165
1181
+ },
1182
+ {
1183
+ "epoch": 0.49,
1184
+ "grad_norm": 0.15500588715076447,
1185
+ "learning_rate": 0.0001067406361527768,
1186
+ "loss": 0.4754,
1187
+ "step": 166
1188
+ },
1189
+ {
1190
+ "epoch": 0.5,
1191
+ "grad_norm": 0.16032655537128448,
1192
+ "learning_rate": 0.00010577885110158958,
1193
+ "loss": 0.4644,
1194
+ "step": 167
1195
+ },
1196
+ {
1197
+ "epoch": 0.5,
1198
+ "grad_norm": 0.15342958271503448,
1199
+ "learning_rate": 0.00010481652938612374,
1200
+ "loss": 0.3911,
1201
+ "step": 168
1202
+ },
1203
+ {
1204
+ "epoch": 0.5,
1205
+ "eval_loss": 0.9589568972587585,
1206
+ "eval_runtime": 324.8473,
1207
+ "eval_samples_per_second": 0.767,
1208
+ "eval_steps_per_second": 0.767,
1209
+ "step": 168
1210
+ },
1211
+ {
1212
+ "epoch": 0.5,
1213
+ "grad_norm": 0.15607774257659912,
1214
+ "learning_rate": 0.00010385376037426226,
1215
+ "loss": 0.492,
1216
+ "step": 169
1217
+ },
1218
+ {
1219
+ "epoch": 0.51,
1220
+ "grad_norm": 0.15384891629219055,
1221
+ "learning_rate": 0.00010289063347542726,
1222
+ "loss": 0.487,
1223
+ "step": 170
1224
+ },
1225
+ {
1226
+ "epoch": 0.51,
1227
+ "grad_norm": 0.15275317430496216,
1228
+ "learning_rate": 0.00010192723813227672,
1229
+ "loss": 0.4475,
1230
+ "step": 171
1231
+ },
1232
+ {
1233
+ "epoch": 0.51,
1234
+ "grad_norm": 0.1687576025724411,
1235
+ "learning_rate": 0.00010096366381239808,
1236
+ "loss": 0.4491,
1237
+ "step": 172
1238
+ },
1239
+ {
1240
+ "epoch": 0.51,
1241
+ "grad_norm": 0.17867827415466309,
1242
+ "learning_rate": 0.0001,
1243
+ "loss": 0.4197,
1244
+ "step": 173
1245
+ },
1246
+ {
1247
+ "epoch": 0.52,
1248
+ "grad_norm": 0.14261119067668915,
1249
+ "learning_rate": 9.903633618760195e-05,
1250
+ "loss": 0.4734,
1251
+ "step": 174
1252
+ },
1253
+ {
1254
+ "epoch": 0.52,
1255
+ "grad_norm": 0.14787495136260986,
1256
+ "learning_rate": 9.807276186772333e-05,
1257
+ "loss": 0.404,
1258
+ "step": 175
1259
+ },
1260
+ {
1261
+ "epoch": 0.52,
1262
+ "grad_norm": 0.15715274214744568,
1263
+ "learning_rate": 9.710936652457276e-05,
1264
+ "loss": 0.4583,
1265
+ "step": 176
1266
+ },
1267
+ {
1268
+ "epoch": 0.53,
1269
+ "grad_norm": 0.1578068882226944,
1270
+ "learning_rate": 9.614623962573776e-05,
1271
+ "loss": 0.4343,
1272
+ "step": 177
1273
+ },
1274
+ {
1275
+ "epoch": 0.53,
1276
+ "grad_norm": 0.15597595274448395,
1277
+ "learning_rate": 9.518347061387628e-05,
1278
+ "loss": 0.4454,
1279
+ "step": 178
1280
+ },
1281
+ {
1282
+ "epoch": 0.53,
1283
+ "grad_norm": 0.142894446849823,
1284
+ "learning_rate": 9.422114889841044e-05,
1285
+ "loss": 0.4443,
1286
+ "step": 179
1287
+ },
1288
+ {
1289
+ "epoch": 0.53,
1290
+ "grad_norm": 0.15279816091060638,
1291
+ "learning_rate": 9.325936384722321e-05,
1292
+ "loss": 0.4428,
1293
+ "step": 180
1294
+ },
1295
+ {
1296
+ "epoch": 0.54,
1297
+ "grad_norm": 0.1651957929134369,
1298
+ "learning_rate": 9.229820477835927e-05,
1299
+ "loss": 0.3857,
1300
+ "step": 181
1301
+ },
1302
+ {
1303
+ "epoch": 0.54,
1304
+ "grad_norm": 0.22555674612522125,
1305
+ "learning_rate": 9.133776095173015e-05,
1306
+ "loss": 0.4578,
1307
+ "step": 182
1308
+ },
1309
+ {
1310
+ "epoch": 0.54,
1311
+ "grad_norm": 0.14163288474082947,
1312
+ "learning_rate": 9.037812156082504e-05,
1313
+ "loss": 0.4409,
1314
+ "step": 183
1315
+ },
1316
+ {
1317
+ "epoch": 0.55,
1318
+ "grad_norm": 0.1683199107646942,
1319
+ "learning_rate": 8.941937572442773e-05,
1320
+ "loss": 0.4829,
1321
+ "step": 184
1322
+ },
1323
+ {
1324
+ "epoch": 0.55,
1325
+ "grad_norm": 0.17766785621643066,
1326
+ "learning_rate": 8.846161247834024e-05,
1327
+ "loss": 0.4357,
1328
+ "step": 185
1329
+ },
1330
+ {
1331
+ "epoch": 0.55,
1332
+ "grad_norm": 0.15518875420093536,
1333
+ "learning_rate": 8.750492076711439e-05,
1334
+ "loss": 0.4681,
1335
+ "step": 186
1336
+ },
1337
+ {
1338
+ "epoch": 0.56,
1339
+ "grad_norm": 0.13920673727989197,
1340
+ "learning_rate": 8.654938943579194e-05,
1341
+ "loss": 0.4258,
1342
+ "step": 187
1343
+ },
1344
+ {
1345
+ "epoch": 0.56,
1346
+ "grad_norm": 0.17552931606769562,
1347
+ "learning_rate": 8.55951072216536e-05,
1348
+ "loss": 0.3932,
1349
+ "step": 188
1350
+ },
1351
+ {
1352
+ "epoch": 0.56,
1353
+ "grad_norm": 0.15486915409564972,
1354
+ "learning_rate": 8.464216274597838e-05,
1355
+ "loss": 0.4679,
1356
+ "step": 189
1357
+ },
1358
+ {
1359
+ "epoch": 0.56,
1360
+ "grad_norm": 0.1437031477689743,
1361
+ "learning_rate": 8.369064450581373e-05,
1362
+ "loss": 0.3984,
1363
+ "step": 190
1364
+ },
1365
+ {
1366
+ "epoch": 0.57,
1367
+ "grad_norm": 0.15499216318130493,
1368
+ "learning_rate": 8.274064086575681e-05,
1369
+ "loss": 0.5216,
1370
+ "step": 191
1371
+ },
1372
+ {
1373
+ "epoch": 0.57,
1374
+ "grad_norm": 0.18269003927707672,
1375
+ "learning_rate": 8.179224004974857e-05,
1376
+ "loss": 0.4853,
1377
+ "step": 192
1378
+ },
1379
+ {
1380
+ "epoch": 0.57,
1381
+ "grad_norm": 0.1596907526254654,
1382
+ "learning_rate": 8.084553013288048e-05,
1383
+ "loss": 0.4784,
1384
+ "step": 193
1385
+ },
1386
+ {
1387
+ "epoch": 0.58,
1388
+ "grad_norm": 0.15115347504615784,
1389
+ "learning_rate": 7.990059903321553e-05,
1390
+ "loss": 0.4306,
1391
+ "step": 194
1392
+ },
1393
+ {
1394
+ "epoch": 0.58,
1395
+ "grad_norm": 0.19720065593719482,
1396
+ "learning_rate": 7.89575345036232e-05,
1397
+ "loss": 0.4782,
1398
+ "step": 195
1399
+ },
1400
+ {
1401
+ "epoch": 0.58,
1402
+ "grad_norm": 0.14170032739639282,
1403
+ "learning_rate": 7.801642412363041e-05,
1404
+ "loss": 0.4318,
1405
+ "step": 196
1406
+ },
1407
+ {
1408
+ "epoch": 0.59,
1409
+ "grad_norm": 0.16026908159255981,
1410
+ "learning_rate": 7.707735529128819e-05,
1411
+ "loss": 0.4656,
1412
+ "step": 197
1413
+ },
1414
+ {
1415
+ "epoch": 0.59,
1416
+ "grad_norm": 0.16910114884376526,
1417
+ "learning_rate": 7.614041521505517e-05,
1418
+ "loss": 0.5014,
1419
+ "step": 198
1420
+ },
1421
+ {
1422
+ "epoch": 0.59,
1423
+ "grad_norm": 0.18795110285282135,
1424
+ "learning_rate": 7.520569090569893e-05,
1425
+ "loss": 0.4512,
1426
+ "step": 199
1427
+ },
1428
+ {
1429
+ "epoch": 0.59,
1430
+ "grad_norm": 0.15903539955615997,
1431
+ "learning_rate": 7.427326916821557e-05,
1432
+ "loss": 0.5036,
1433
+ "step": 200
1434
+ },
1435
+ {
1436
+ "epoch": 0.6,
1437
+ "grad_norm": 0.15247230231761932,
1438
+ "learning_rate": 7.334323659376829e-05,
1439
+ "loss": 0.4369,
1440
+ "step": 201
1441
+ },
1442
+ {
1443
+ "epoch": 0.6,
1444
+ "grad_norm": 0.1472063809633255,
1445
+ "learning_rate": 7.24156795516461e-05,
1446
+ "loss": 0.426,
1447
+ "step": 202
1448
+ },
1449
+ {
1450
+ "epoch": 0.6,
1451
+ "grad_norm": 0.15710321068763733,
1452
+ "learning_rate": 7.149068418124281e-05,
1453
+ "loss": 0.4034,
1454
+ "step": 203
1455
+ },
1456
+ {
1457
+ "epoch": 0.61,
1458
+ "grad_norm": 0.15857233107089996,
1459
+ "learning_rate": 7.056833638405762e-05,
1460
+ "loss": 0.4783,
1461
+ "step": 204
1462
+ },
1463
+ {
1464
+ "epoch": 0.61,
1465
+ "grad_norm": 0.16299530863761902,
1466
+ "learning_rate": 6.964872181571764e-05,
1467
+ "loss": 0.4719,
1468
+ "step": 205
1469
+ },
1470
+ {
1471
+ "epoch": 0.61,
1472
+ "grad_norm": 0.14976787567138672,
1473
+ "learning_rate": 6.87319258780234e-05,
1474
+ "loss": 0.4543,
1475
+ "step": 206
1476
+ },
1477
+ {
1478
+ "epoch": 0.61,
1479
+ "grad_norm": 0.14311917126178741,
1480
+ "learning_rate": 6.781803371101774e-05,
1481
+ "loss": 0.4422,
1482
+ "step": 207
1483
+ },
1484
+ {
1485
+ "epoch": 0.62,
1486
+ "grad_norm": 0.14494828879833221,
1487
+ "learning_rate": 6.690713018507918e-05,
1488
+ "loss": 0.4078,
1489
+ "step": 208
1490
+ },
1491
+ {
1492
+ "epoch": 0.62,
1493
+ "grad_norm": 0.1489972174167633,
1494
+ "learning_rate": 6.599929989304035e-05,
1495
+ "loss": 0.3908,
1496
+ "step": 209
1497
+ },
1498
+ {
1499
+ "epoch": 0.62,
1500
+ "grad_norm": 0.15475499629974365,
1501
+ "learning_rate": 6.509462714233195e-05,
1502
+ "loss": 0.5416,
1503
+ "step": 210
1504
+ },
1505
+ {
1506
+ "epoch": 0.63,
1507
+ "grad_norm": 0.1536937654018402,
1508
+ "learning_rate": 6.419319594715339e-05,
1509
+ "loss": 0.4267,
1510
+ "step": 211
1511
+ },
1512
+ {
1513
+ "epoch": 0.63,
1514
+ "grad_norm": 0.1654786467552185,
1515
+ "learning_rate": 6.32950900206708e-05,
1516
+ "loss": 0.4622,
1517
+ "step": 212
1518
+ },
1519
+ {
1520
+ "epoch": 0.63,
1521
+ "grad_norm": 0.14727674424648285,
1522
+ "learning_rate": 6.240039276724272e-05,
1523
+ "loss": 0.441,
1524
+ "step": 213
1525
+ },
1526
+ {
1527
+ "epoch": 0.64,
1528
+ "grad_norm": 0.1774049550294876,
1529
+ "learning_rate": 6.150918727467455e-05,
1530
+ "loss": 0.4956,
1531
+ "step": 214
1532
+ },
1533
+ {
1534
+ "epoch": 0.64,
1535
+ "grad_norm": 0.14867380261421204,
1536
+ "learning_rate": 6.062155630650265e-05,
1537
+ "loss": 0.5788,
1538
+ "step": 215
1539
+ },
1540
+ {
1541
+ "epoch": 0.64,
1542
+ "grad_norm": 0.16996605694293976,
1543
+ "learning_rate": 5.973758229430806e-05,
1544
+ "loss": 0.588,
1545
+ "step": 216
1546
+ },
1547
+ {
1548
+ "epoch": 0.64,
1549
+ "grad_norm": 0.15790195763111115,
1550
+ "learning_rate": 5.885734733006154e-05,
1551
+ "loss": 0.425,
1552
+ "step": 217
1553
+ },
1554
+ {
1555
+ "epoch": 0.65,
1556
+ "grad_norm": 0.15656080842018127,
1557
+ "learning_rate": 5.798093315849984e-05,
1558
+ "loss": 0.4193,
1559
+ "step": 218
1560
+ },
1561
+ {
1562
+ "epoch": 0.65,
1563
+ "grad_norm": 0.143330916762352,
1564
+ "learning_rate": 5.710842116953438e-05,
1565
+ "loss": 0.4427,
1566
+ "step": 219
1567
+ },
1568
+ {
1569
+ "epoch": 0.65,
1570
+ "grad_norm": 0.15389469265937805,
1571
+ "learning_rate": 5.623989239069275e-05,
1572
+ "loss": 0.4265,
1573
+ "step": 220
1574
+ },
1575
+ {
1576
+ "epoch": 0.66,
1577
+ "grad_norm": 0.16425251960754395,
1578
+ "learning_rate": 5.537542747959394e-05,
1579
+ "loss": 0.53,
1580
+ "step": 221
1581
+ },
1582
+ {
1583
+ "epoch": 0.66,
1584
+ "grad_norm": 0.1583469659090042,
1585
+ "learning_rate": 5.451510671645807e-05,
1586
+ "loss": 0.5009,
1587
+ "step": 222
1588
+ },
1589
+ {
1590
+ "epoch": 0.66,
1591
+ "grad_norm": 0.16075047850608826,
1592
+ "learning_rate": 5.36590099966507e-05,
1593
+ "loss": 0.5189,
1594
+ "step": 223
1595
+ },
1596
+ {
1597
+ "epoch": 0.67,
1598
+ "grad_norm": 0.14854145050048828,
1599
+ "learning_rate": 5.2807216823263484e-05,
1600
+ "loss": 0.463,
1601
+ "step": 224
1602
+ },
1603
+ {
1604
+ "epoch": 0.67,
1605
+ "grad_norm": 0.15285861492156982,
1606
+ "learning_rate": 5.1959806299730774e-05,
1607
+ "loss": 0.4413,
1608
+ "step": 225
1609
+ },
1610
+ {
1611
+ "epoch": 0.67,
1612
+ "grad_norm": 0.14538119733333588,
1613
+ "learning_rate": 5.111685712248364e-05,
1614
+ "loss": 0.4736,
1615
+ "step": 226
1616
+ },
1617
+ {
1618
+ "epoch": 0.67,
1619
+ "grad_norm": 0.15160393714904785,
1620
+ "learning_rate": 5.0278447573641495e-05,
1621
+ "loss": 0.4298,
1622
+ "step": 227
1623
+ },
1624
+ {
1625
+ "epoch": 0.68,
1626
+ "grad_norm": 0.14497333765029907,
1627
+ "learning_rate": 4.944465551374238e-05,
1628
+ "loss": 0.3981,
1629
+ "step": 228
1630
+ },
1631
+ {
1632
+ "epoch": 0.68,
1633
+ "grad_norm": 0.14342719316482544,
1634
+ "learning_rate": 4.861555837451213e-05,
1635
+ "loss": 0.4502,
1636
+ "step": 229
1637
+ },
1638
+ {
1639
+ "epoch": 0.68,
1640
+ "grad_norm": 0.1621183604001999,
1641
+ "learning_rate": 4.779123315167362e-05,
1642
+ "loss": 0.4322,
1643
+ "step": 230
1644
+ },
1645
+ {
1646
+ "epoch": 0.69,
1647
+ "grad_norm": 0.15252463519573212,
1648
+ "learning_rate": 4.6971756397796504e-05,
1649
+ "loss": 0.5072,
1650
+ "step": 231
1651
+ },
1652
+ {
1653
+ "epoch": 0.69,
1654
+ "grad_norm": 0.17667719721794128,
1655
+ "learning_rate": 4.61572042151878e-05,
1656
+ "loss": 0.4708,
1657
+ "step": 232
1658
+ },
1659
+ {
1660
+ "epoch": 0.69,
1661
+ "grad_norm": 0.15273234248161316,
1662
+ "learning_rate": 4.5347652248824624e-05,
1663
+ "loss": 0.5212,
1664
+ "step": 233
1665
+ },
1666
+ {
1667
+ "epoch": 0.7,
1668
+ "grad_norm": 0.16372352838516235,
1669
+ "learning_rate": 4.4543175679329344e-05,
1670
+ "loss": 0.5303,
1671
+ "step": 234
1672
+ },
1673
+ {
1674
+ "epoch": 0.7,
1675
+ "grad_norm": 0.14327646791934967,
1676
+ "learning_rate": 4.3743849215987595e-05,
1677
+ "loss": 0.4,
1678
+ "step": 235
1679
+ },
1680
+ {
1681
+ "epoch": 0.7,
1682
+ "grad_norm": 0.1604086011648178,
1683
+ "learning_rate": 4.294974708981041e-05,
1684
+ "loss": 0.4508,
1685
+ "step": 236
1686
+ },
1687
+ {
1688
+ "epoch": 0.7,
1689
+ "grad_norm": 0.23445452749729156,
1690
+ "learning_rate": 4.216094304664056e-05,
1691
+ "loss": 0.4363,
1692
+ "step": 237
1693
+ },
1694
+ {
1695
+ "epoch": 0.71,
1696
+ "grad_norm": 0.15834979712963104,
1697
+ "learning_rate": 4.137751034030399e-05,
1698
+ "loss": 0.5153,
1699
+ "step": 238
1700
+ },
1701
+ {
1702
+ "epoch": 0.71,
1703
+ "grad_norm": 0.14937692880630493,
1704
+ "learning_rate": 4.059952172580694e-05,
1705
+ "loss": 0.4423,
1706
+ "step": 239
1707
+ },
1708
+ {
1709
+ "epoch": 0.71,
1710
+ "grad_norm": 0.16776776313781738,
1711
+ "learning_rate": 3.982704945257957e-05,
1712
+ "loss": 0.4089,
1713
+ "step": 240
1714
+ },
1715
+ {
1716
+ "epoch": 0.72,
1717
+ "grad_norm": 0.16948916018009186,
1718
+ "learning_rate": 3.906016525776611e-05,
1719
+ "loss": 0.562,
1720
+ "step": 241
1721
+ },
1722
+ {
1723
+ "epoch": 0.72,
1724
+ "grad_norm": 0.16811306774616241,
1725
+ "learning_rate": 3.829894035956306e-05,
1726
+ "loss": 0.407,
1727
+ "step": 242
1728
+ },
1729
+ {
1730
+ "epoch": 0.72,
1731
+ "grad_norm": 0.13980595767498016,
1732
+ "learning_rate": 3.7543445450605285e-05,
1733
+ "loss": 0.4329,
1734
+ "step": 243
1735
+ },
1736
+ {
1737
+ "epoch": 0.72,
1738
+ "grad_norm": 0.16961558163166046,
1739
+ "learning_rate": 3.6793750691400994e-05,
1740
+ "loss": 0.4476,
1741
+ "step": 244
1742
+ },
1743
+ {
1744
+ "epoch": 0.73,
1745
+ "grad_norm": 0.16474933922290802,
1746
+ "learning_rate": 3.6049925703816214e-05,
1747
+ "loss": 0.4629,
1748
+ "step": 245
1749
+ },
1750
+ {
1751
+ "epoch": 0.73,
1752
+ "grad_norm": 0.1619129627943039,
1753
+ "learning_rate": 3.53120395646092e-05,
1754
+ "loss": 0.4648,
1755
+ "step": 246
1756
+ },
1757
+ {
1758
+ "epoch": 0.73,
1759
+ "grad_norm": 0.20941300690174103,
1760
+ "learning_rate": 3.458016079901544e-05,
1761
+ "loss": 0.4777,
1762
+ "step": 247
1763
+ },
1764
+ {
1765
+ "epoch": 0.74,
1766
+ "grad_norm": 0.1691591888666153,
1767
+ "learning_rate": 3.38543573743839e-05,
1768
+ "loss": 0.4544,
1769
+ "step": 248
1770
+ },
1771
+ {
1772
+ "epoch": 0.74,
1773
+ "grad_norm": 0.1482505053281784,
1774
+ "learning_rate": 3.3134696693865316e-05,
1775
+ "loss": 0.4295,
1776
+ "step": 249
1777
+ },
1778
+ {
1779
+ "epoch": 0.74,
1780
+ "grad_norm": 0.16560567915439606,
1781
+ "learning_rate": 3.242124559015234e-05,
1782
+ "loss": 0.4568,
1783
+ "step": 250
1784
+ },
1785
+ {
1786
+ "epoch": 0.75,
1787
+ "grad_norm": 0.15260429680347443,
1788
+ "learning_rate": 3.171407031927325e-05,
1789
+ "loss": 0.4311,
1790
+ "step": 251
1791
+ },
1792
+ {
1793
+ "epoch": 0.75,
1794
+ "grad_norm": 0.15556661784648895,
1795
+ "learning_rate": 3.101323655443882e-05,
1796
+ "loss": 0.4655,
1797
+ "step": 252
1798
+ },
1799
+ {
1800
+ "epoch": 0.75,
1801
+ "eval_loss": 0.9627882838249207,
1802
+ "eval_runtime": 320.8688,
1803
+ "eval_samples_per_second": 0.776,
1804
+ "eval_steps_per_second": 0.776,
1805
+ "step": 252
1806
+ }
1807
+ ],
1808
+ "logging_steps": 1,
1809
+ "max_steps": 336,
1810
+ "num_input_tokens_seen": 0,
1811
+ "num_train_epochs": 1,
1812
+ "save_steps": 84,
1813
+ "total_flos": 2.5549257243937997e+18,
1814
+ "train_batch_size": 1,
1815
+ "trial_name": null,
1816
+ "trial_params": null
1817
+ }
checkpoint-252/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e92cf4d819bd687a107f49060d4cb816ff788627c8bf6c0b866a032bb83436a5
3
+ size 5816
checkpoint-336/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ai21labs/Jamba-v0.1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-336/adapter_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "ai21labs/Jamba-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 32,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 16,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "gate_proj",
24
+ "q_proj",
25
+ "k_proj",
26
+ "in_proj",
27
+ "out_proj",
28
+ "dt_proj",
29
+ "down_proj",
30
+ "router",
31
+ "up_proj",
32
+ "o_proj",
33
+ "v_proj",
34
+ "x_proj"
35
+ ],
36
+ "task_type": "CAUSAL_LM",
37
+ "use_dora": false,
38
+ "use_rslora": false
39
+ }
checkpoint-336/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:946caaf56c399fa340ba39252e63fa2030e38c5f287093d6f070fba98de065dd
3
+ size 1062947520
checkpoint-336/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a1139c488391aded478ce1712957f2e1c1ec48bb1a1266c0a445bf30c76e6db9
3
+ size 534639348
checkpoint-336/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:090813dfaba36bbb1fd2dc6ca37a71ba0688884c2e93563f97ea7b2566dd62ab
3
+ size 14244
checkpoint-336/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:924d302abf5f685356e66110270e1f4d44c1c6f59465d461e888926b2dade607
3
+ size 1064
checkpoint-336/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|startoftext|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|pad|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<|unk|>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-336/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-336/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02fd6530b8ede0eedd8e509fcab32da7b1dd04c8119f8498c787100f13112713
3
+ size 1124742
checkpoint-336/tokenizer_config.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<|pad|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<|startoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "<|endoftext|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "3": {
30
+ "content": "<|unk|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ }
37
+ },
38
+ "bos_token": "<|startoftext|>",
39
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
40
+ "clean_up_tokenization_spaces": false,
41
+ "eos_token": "<|endoftext|>",
42
+ "model_max_length": 1000000000000000019884624838656,
43
+ "pad_token": "<|pad|>",
44
+ "spaces_between_special_tokens": false,
45
+ "tokenizer_class": "LlamaTokenizer",
46
+ "unk_token": "<|unk|>",
47
+ "use_default_system_prompt": false
48
+ }
checkpoint-336/trainer_state.json ADDED
@@ -0,0 +1,2413 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9981433345711103,
5
+ "eval_steps": 84,
6
+ "global_step": 336,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "grad_norm": 0.297607958316803,
14
+ "learning_rate": 2e-05,
15
+ "loss": 0.5915,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.0,
20
+ "eval_loss": 1.027875304222107,
21
+ "eval_runtime": 319.0994,
22
+ "eval_samples_per_second": 0.78,
23
+ "eval_steps_per_second": 0.78,
24
+ "step": 1
25
+ },
26
+ {
27
+ "epoch": 0.01,
28
+ "grad_norm": 0.3444654643535614,
29
+ "learning_rate": 4e-05,
30
+ "loss": 0.5941,
31
+ "step": 2
32
+ },
33
+ {
34
+ "epoch": 0.01,
35
+ "grad_norm": 0.31323298811912537,
36
+ "learning_rate": 6e-05,
37
+ "loss": 0.5986,
38
+ "step": 3
39
+ },
40
+ {
41
+ "epoch": 0.01,
42
+ "grad_norm": 0.3083553612232208,
43
+ "learning_rate": 8e-05,
44
+ "loss": 0.589,
45
+ "step": 4
46
+ },
47
+ {
48
+ "epoch": 0.01,
49
+ "grad_norm": 0.3427445590496063,
50
+ "learning_rate": 0.0001,
51
+ "loss": 0.6559,
52
+ "step": 5
53
+ },
54
+ {
55
+ "epoch": 0.02,
56
+ "grad_norm": 0.26026275753974915,
57
+ "learning_rate": 0.00012,
58
+ "loss": 0.6444,
59
+ "step": 6
60
+ },
61
+ {
62
+ "epoch": 0.02,
63
+ "grad_norm": 0.22449900209903717,
64
+ "learning_rate": 0.00014,
65
+ "loss": 0.5621,
66
+ "step": 7
67
+ },
68
+ {
69
+ "epoch": 0.02,
70
+ "grad_norm": 0.18667733669281006,
71
+ "learning_rate": 0.00016,
72
+ "loss": 0.574,
73
+ "step": 8
74
+ },
75
+ {
76
+ "epoch": 0.03,
77
+ "grad_norm": 0.1876465231180191,
78
+ "learning_rate": 0.00018,
79
+ "loss": 0.6105,
80
+ "step": 9
81
+ },
82
+ {
83
+ "epoch": 0.03,
84
+ "grad_norm": 0.2330338954925537,
85
+ "learning_rate": 0.0002,
86
+ "loss": 0.5793,
87
+ "step": 10
88
+ },
89
+ {
90
+ "epoch": 0.03,
91
+ "grad_norm": 0.18704406917095184,
92
+ "learning_rate": 0.00019999535665248002,
93
+ "loss": 0.5431,
94
+ "step": 11
95
+ },
96
+ {
97
+ "epoch": 0.04,
98
+ "grad_norm": 0.20125611126422882,
99
+ "learning_rate": 0.0001999814270411335,
100
+ "loss": 0.5219,
101
+ "step": 12
102
+ },
103
+ {
104
+ "epoch": 0.04,
105
+ "grad_norm": 0.17054004967212677,
106
+ "learning_rate": 0.000199958212459561,
107
+ "loss": 0.5022,
108
+ "step": 13
109
+ },
110
+ {
111
+ "epoch": 0.04,
112
+ "grad_norm": 0.20665132999420166,
113
+ "learning_rate": 0.00019992571506363,
114
+ "loss": 0.5907,
115
+ "step": 14
116
+ },
117
+ {
118
+ "epoch": 0.04,
119
+ "grad_norm": 0.21675613522529602,
120
+ "learning_rate": 0.00019988393787127441,
121
+ "loss": 0.4667,
122
+ "step": 15
123
+ },
124
+ {
125
+ "epoch": 0.05,
126
+ "grad_norm": 0.20350293815135956,
127
+ "learning_rate": 0.0001998328847622148,
128
+ "loss": 0.5533,
129
+ "step": 16
130
+ },
131
+ {
132
+ "epoch": 0.05,
133
+ "grad_norm": 0.18382889032363892,
134
+ "learning_rate": 0.00019977256047759765,
135
+ "loss": 0.5022,
136
+ "step": 17
137
+ },
138
+ {
139
+ "epoch": 0.05,
140
+ "grad_norm": 0.1696760207414627,
141
+ "learning_rate": 0.00019970297061955533,
142
+ "loss": 0.5381,
143
+ "step": 18
144
+ },
145
+ {
146
+ "epoch": 0.06,
147
+ "grad_norm": 0.19592055678367615,
148
+ "learning_rate": 0.00019962412165068573,
149
+ "loss": 0.5733,
150
+ "step": 19
151
+ },
152
+ {
153
+ "epoch": 0.06,
154
+ "grad_norm": 0.17972029745578766,
155
+ "learning_rate": 0.00019953602089345217,
156
+ "loss": 0.5891,
157
+ "step": 20
158
+ },
159
+ {
160
+ "epoch": 0.06,
161
+ "grad_norm": 0.19014880061149597,
162
+ "learning_rate": 0.0001994386765295032,
163
+ "loss": 0.5629,
164
+ "step": 21
165
+ },
166
+ {
167
+ "epoch": 0.07,
168
+ "grad_norm": 0.15824897587299347,
169
+ "learning_rate": 0.00019933209759891317,
170
+ "loss": 0.5627,
171
+ "step": 22
172
+ },
173
+ {
174
+ "epoch": 0.07,
175
+ "grad_norm": 0.17133353650569916,
176
+ "learning_rate": 0.00019921629399934223,
177
+ "loss": 0.5542,
178
+ "step": 23
179
+ },
180
+ {
181
+ "epoch": 0.07,
182
+ "grad_norm": 0.13738161325454712,
183
+ "learning_rate": 0.00019909127648511755,
184
+ "loss": 0.4443,
185
+ "step": 24
186
+ },
187
+ {
188
+ "epoch": 0.07,
189
+ "grad_norm": 0.16617180407047272,
190
+ "learning_rate": 0.0001989570566662345,
191
+ "loss": 0.5469,
192
+ "step": 25
193
+ },
194
+ {
195
+ "epoch": 0.08,
196
+ "grad_norm": 0.13969440758228302,
197
+ "learning_rate": 0.00019881364700727823,
198
+ "loss": 0.5141,
199
+ "step": 26
200
+ },
201
+ {
202
+ "epoch": 0.08,
203
+ "grad_norm": 0.1598738580942154,
204
+ "learning_rate": 0.0001986610608262665,
205
+ "loss": 0.5598,
206
+ "step": 27
207
+ },
208
+ {
209
+ "epoch": 0.08,
210
+ "grad_norm": 0.14080321788787842,
211
+ "learning_rate": 0.00019849931229341258,
212
+ "loss": 0.4978,
213
+ "step": 28
214
+ },
215
+ {
216
+ "epoch": 0.09,
217
+ "grad_norm": 0.16124503314495087,
218
+ "learning_rate": 0.00019832841642980945,
219
+ "loss": 0.613,
220
+ "step": 29
221
+ },
222
+ {
223
+ "epoch": 0.09,
224
+ "grad_norm": 0.1537931114435196,
225
+ "learning_rate": 0.00019814838910603481,
226
+ "loss": 0.4913,
227
+ "step": 30
228
+ },
229
+ {
230
+ "epoch": 0.09,
231
+ "grad_norm": 0.16199100017547607,
232
+ "learning_rate": 0.00019795924704067721,
233
+ "loss": 0.4872,
234
+ "step": 31
235
+ },
236
+ {
237
+ "epoch": 0.1,
238
+ "grad_norm": 0.13554096221923828,
239
+ "learning_rate": 0.00019776100779878345,
240
+ "loss": 0.4609,
241
+ "step": 32
242
+ },
243
+ {
244
+ "epoch": 0.1,
245
+ "grad_norm": 0.18090932071208954,
246
+ "learning_rate": 0.00019755368979022732,
247
+ "loss": 0.4582,
248
+ "step": 33
249
+ },
250
+ {
251
+ "epoch": 0.1,
252
+ "grad_norm": 0.14535771310329437,
253
+ "learning_rate": 0.00019733731226800015,
254
+ "loss": 0.5359,
255
+ "step": 34
256
+ },
257
+ {
258
+ "epoch": 0.1,
259
+ "grad_norm": 0.1427253782749176,
260
+ "learning_rate": 0.00019711189532642243,
261
+ "loss": 0.5324,
262
+ "step": 35
263
+ },
264
+ {
265
+ "epoch": 0.11,
266
+ "grad_norm": 0.13935472071170807,
267
+ "learning_rate": 0.00019687745989927823,
268
+ "loss": 0.5106,
269
+ "step": 36
270
+ },
271
+ {
272
+ "epoch": 0.11,
273
+ "grad_norm": 0.1388338804244995,
274
+ "learning_rate": 0.00019663402775787066,
275
+ "loss": 0.5634,
276
+ "step": 37
277
+ },
278
+ {
279
+ "epoch": 0.11,
280
+ "grad_norm": 0.13948731124401093,
281
+ "learning_rate": 0.00019638162150900027,
282
+ "loss": 0.5058,
283
+ "step": 38
284
+ },
285
+ {
286
+ "epoch": 0.12,
287
+ "grad_norm": 0.13687050342559814,
288
+ "learning_rate": 0.00019612026459286578,
289
+ "loss": 0.5806,
290
+ "step": 39
291
+ },
292
+ {
293
+ "epoch": 0.12,
294
+ "grad_norm": 0.1311887949705124,
295
+ "learning_rate": 0.00019584998128088684,
296
+ "loss": 0.4552,
297
+ "step": 40
298
+ },
299
+ {
300
+ "epoch": 0.12,
301
+ "grad_norm": 0.15644784271717072,
302
+ "learning_rate": 0.0001955707966734505,
303
+ "loss": 0.4424,
304
+ "step": 41
305
+ },
306
+ {
307
+ "epoch": 0.12,
308
+ "grad_norm": 0.14039994776248932,
309
+ "learning_rate": 0.00019528273669757972,
310
+ "loss": 0.4905,
311
+ "step": 42
312
+ },
313
+ {
314
+ "epoch": 0.13,
315
+ "grad_norm": 0.14709696173667908,
316
+ "learning_rate": 0.0001949858281045261,
317
+ "loss": 0.5655,
318
+ "step": 43
319
+ },
320
+ {
321
+ "epoch": 0.13,
322
+ "grad_norm": 0.1661250740289688,
323
+ "learning_rate": 0.00019468009846728513,
324
+ "loss": 0.5141,
325
+ "step": 44
326
+ },
327
+ {
328
+ "epoch": 0.13,
329
+ "grad_norm": 0.3046470582485199,
330
+ "learning_rate": 0.00019436557617803595,
331
+ "loss": 0.4792,
332
+ "step": 45
333
+ },
334
+ {
335
+ "epoch": 0.14,
336
+ "grad_norm": 0.15159915387630463,
337
+ "learning_rate": 0.00019404229044550433,
338
+ "loss": 0.5077,
339
+ "step": 46
340
+ },
341
+ {
342
+ "epoch": 0.14,
343
+ "grad_norm": 0.15115606784820557,
344
+ "learning_rate": 0.00019371027129225042,
345
+ "loss": 0.4915,
346
+ "step": 47
347
+ },
348
+ {
349
+ "epoch": 0.14,
350
+ "grad_norm": 0.14040274918079376,
351
+ "learning_rate": 0.0001933695495518804,
352
+ "loss": 0.5048,
353
+ "step": 48
354
+ },
355
+ {
356
+ "epoch": 0.15,
357
+ "grad_norm": 0.14947518706321716,
358
+ "learning_rate": 0.00019302015686618326,
359
+ "loss": 0.5124,
360
+ "step": 49
361
+ },
362
+ {
363
+ "epoch": 0.15,
364
+ "grad_norm": 0.13805006444454193,
365
+ "learning_rate": 0.0001926621256821922,
366
+ "loss": 0.4455,
367
+ "step": 50
368
+ },
369
+ {
370
+ "epoch": 0.15,
371
+ "grad_norm": 0.14188264310359955,
372
+ "learning_rate": 0.00019229548924917146,
373
+ "loss": 0.5244,
374
+ "step": 51
375
+ },
376
+ {
377
+ "epoch": 0.15,
378
+ "grad_norm": 0.1314387321472168,
379
+ "learning_rate": 0.00019192028161552847,
380
+ "loss": 0.5251,
381
+ "step": 52
382
+ },
383
+ {
384
+ "epoch": 0.16,
385
+ "grad_norm": 0.1659722477197647,
386
+ "learning_rate": 0.0001915365376256519,
387
+ "loss": 0.4851,
388
+ "step": 53
389
+ },
390
+ {
391
+ "epoch": 0.16,
392
+ "grad_norm": 0.1405472755432129,
393
+ "learning_rate": 0.00019114429291667583,
394
+ "loss": 0.463,
395
+ "step": 54
396
+ },
397
+ {
398
+ "epoch": 0.16,
399
+ "grad_norm": 0.14347247779369354,
400
+ "learning_rate": 0.00019074358391517023,
401
+ "loss": 0.4491,
402
+ "step": 55
403
+ },
404
+ {
405
+ "epoch": 0.17,
406
+ "grad_norm": 0.14897900819778442,
407
+ "learning_rate": 0.00019033444783375804,
408
+ "loss": 0.4942,
409
+ "step": 56
410
+ },
411
+ {
412
+ "epoch": 0.17,
413
+ "grad_norm": 0.13556955754756927,
414
+ "learning_rate": 0.00018991692266765947,
415
+ "loss": 0.4755,
416
+ "step": 57
417
+ },
418
+ {
419
+ "epoch": 0.17,
420
+ "grad_norm": 0.16432009637355804,
421
+ "learning_rate": 0.00018949104719116332,
422
+ "loss": 0.5747,
423
+ "step": 58
424
+ },
425
+ {
426
+ "epoch": 0.18,
427
+ "grad_norm": 0.15541689097881317,
428
+ "learning_rate": 0.00018905686095402647,
429
+ "loss": 0.533,
430
+ "step": 59
431
+ },
432
+ {
433
+ "epoch": 0.18,
434
+ "grad_norm": 0.1607791632413864,
435
+ "learning_rate": 0.0001886144042778006,
436
+ "loss": 0.556,
437
+ "step": 60
438
+ },
439
+ {
440
+ "epoch": 0.18,
441
+ "grad_norm": 0.15379983186721802,
442
+ "learning_rate": 0.00018816371825208789,
443
+ "loss": 0.4549,
444
+ "step": 61
445
+ },
446
+ {
447
+ "epoch": 0.18,
448
+ "grad_norm": 0.15419824421405792,
449
+ "learning_rate": 0.0001877048447307252,
450
+ "loss": 0.4933,
451
+ "step": 62
452
+ },
453
+ {
454
+ "epoch": 0.19,
455
+ "grad_norm": 0.1353635936975479,
456
+ "learning_rate": 0.00018723782632789701,
457
+ "loss": 0.393,
458
+ "step": 63
459
+ },
460
+ {
461
+ "epoch": 0.19,
462
+ "grad_norm": 0.15725383162498474,
463
+ "learning_rate": 0.00018676270641417822,
464
+ "loss": 0.4671,
465
+ "step": 64
466
+ },
467
+ {
468
+ "epoch": 0.19,
469
+ "grad_norm": 0.12909093499183655,
470
+ "learning_rate": 0.0001862795291125063,
471
+ "loss": 0.484,
472
+ "step": 65
473
+ },
474
+ {
475
+ "epoch": 0.2,
476
+ "grad_norm": 0.14394541084766388,
477
+ "learning_rate": 0.0001857883392940837,
478
+ "loss": 0.5232,
479
+ "step": 66
480
+ },
481
+ {
482
+ "epoch": 0.2,
483
+ "grad_norm": 0.1671515554189682,
484
+ "learning_rate": 0.000185289182574211,
485
+ "loss": 0.4683,
486
+ "step": 67
487
+ },
488
+ {
489
+ "epoch": 0.2,
490
+ "grad_norm": 0.1658957600593567,
491
+ "learning_rate": 0.0001847821053080505,
492
+ "loss": 0.5072,
493
+ "step": 68
494
+ },
495
+ {
496
+ "epoch": 0.2,
497
+ "grad_norm": 0.15142019093036652,
498
+ "learning_rate": 0.00018426715458632153,
499
+ "loss": 0.5328,
500
+ "step": 69
501
+ },
502
+ {
503
+ "epoch": 0.21,
504
+ "grad_norm": 0.141921728849411,
505
+ "learning_rate": 0.00018374437823092724,
506
+ "loss": 0.4387,
507
+ "step": 70
508
+ },
509
+ {
510
+ "epoch": 0.21,
511
+ "grad_norm": 0.1730872541666031,
512
+ "learning_rate": 0.00018321382479051347,
513
+ "loss": 0.5323,
514
+ "step": 71
515
+ },
516
+ {
517
+ "epoch": 0.21,
518
+ "grad_norm": 0.13589338958263397,
519
+ "learning_rate": 0.00018267554353596025,
520
+ "loss": 0.4217,
521
+ "step": 72
522
+ },
523
+ {
524
+ "epoch": 0.22,
525
+ "grad_norm": 0.16519547998905182,
526
+ "learning_rate": 0.0001821295844558062,
527
+ "loss": 0.4498,
528
+ "step": 73
529
+ },
530
+ {
531
+ "epoch": 0.22,
532
+ "grad_norm": 0.16089589893817902,
533
+ "learning_rate": 0.0001815759982516061,
534
+ "loss": 0.5204,
535
+ "step": 74
536
+ },
537
+ {
538
+ "epoch": 0.22,
539
+ "grad_norm": 0.16409483551979065,
540
+ "learning_rate": 0.00018101483633322255,
541
+ "loss": 0.4511,
542
+ "step": 75
543
+ },
544
+ {
545
+ "epoch": 0.23,
546
+ "grad_norm": 0.16179721057415009,
547
+ "learning_rate": 0.00018044615081405153,
548
+ "loss": 0.5866,
549
+ "step": 76
550
+ },
551
+ {
552
+ "epoch": 0.23,
553
+ "grad_norm": 0.15137337148189545,
554
+ "learning_rate": 0.00017986999450618295,
555
+ "loss": 0.4728,
556
+ "step": 77
557
+ },
558
+ {
559
+ "epoch": 0.23,
560
+ "grad_norm": 0.14265336096286774,
561
+ "learning_rate": 0.00017928642091549613,
562
+ "loss": 0.4491,
563
+ "step": 78
564
+ },
565
+ {
566
+ "epoch": 0.23,
567
+ "grad_norm": 0.14860045909881592,
568
+ "learning_rate": 0.00017869548423669077,
569
+ "loss": 0.4734,
570
+ "step": 79
571
+ },
572
+ {
573
+ "epoch": 0.24,
574
+ "grad_norm": 0.14790605008602142,
575
+ "learning_rate": 0.00017809723934825405,
576
+ "loss": 0.533,
577
+ "step": 80
578
+ },
579
+ {
580
+ "epoch": 0.24,
581
+ "grad_norm": 0.1581815779209137,
582
+ "learning_rate": 0.00017749174180736442,
583
+ "loss": 0.4661,
584
+ "step": 81
585
+ },
586
+ {
587
+ "epoch": 0.24,
588
+ "grad_norm": 0.1520436853170395,
589
+ "learning_rate": 0.00017687904784473188,
590
+ "loss": 0.5292,
591
+ "step": 82
592
+ },
593
+ {
594
+ "epoch": 0.25,
595
+ "grad_norm": 0.15341107547283173,
596
+ "learning_rate": 0.00017625921435937637,
597
+ "loss": 0.5062,
598
+ "step": 83
599
+ },
600
+ {
601
+ "epoch": 0.25,
602
+ "grad_norm": 0.14248648285865784,
603
+ "learning_rate": 0.00017563229891334338,
604
+ "loss": 0.4249,
605
+ "step": 84
606
+ },
607
+ {
608
+ "epoch": 0.25,
609
+ "eval_loss": 0.9711415767669678,
610
+ "eval_runtime": 320.5008,
611
+ "eval_samples_per_second": 0.777,
612
+ "eval_steps_per_second": 0.777,
613
+ "step": 84
614
+ },
615
+ {
616
+ "epoch": 0.25,
617
+ "grad_norm": 0.16506022214889526,
618
+ "learning_rate": 0.00017499835972635856,
619
+ "loss": 0.4873,
620
+ "step": 85
621
+ },
622
+ {
623
+ "epoch": 0.26,
624
+ "grad_norm": 0.14895877242088318,
625
+ "learning_rate": 0.00017435745567042095,
626
+ "loss": 0.4774,
627
+ "step": 86
628
+ },
629
+ {
630
+ "epoch": 0.26,
631
+ "grad_norm": 0.25245463848114014,
632
+ "learning_rate": 0.00017370964626433567,
633
+ "loss": 0.5324,
634
+ "step": 87
635
+ },
636
+ {
637
+ "epoch": 0.26,
638
+ "grad_norm": 0.14706483483314514,
639
+ "learning_rate": 0.0001730549916681868,
640
+ "loss": 0.4536,
641
+ "step": 88
642
+ },
643
+ {
644
+ "epoch": 0.26,
645
+ "grad_norm": 0.14856815338134766,
646
+ "learning_rate": 0.00017239355267775018,
647
+ "loss": 0.4576,
648
+ "step": 89
649
+ },
650
+ {
651
+ "epoch": 0.27,
652
+ "grad_norm": 0.1513276994228363,
653
+ "learning_rate": 0.0001717253907188477,
654
+ "loss": 0.4286,
655
+ "step": 90
656
+ },
657
+ {
658
+ "epoch": 0.27,
659
+ "grad_norm": 0.1549597978591919,
660
+ "learning_rate": 0.00017105056784164294,
661
+ "loss": 0.4554,
662
+ "step": 91
663
+ },
664
+ {
665
+ "epoch": 0.27,
666
+ "grad_norm": 0.15850332379341125,
667
+ "learning_rate": 0.00017036914671487852,
668
+ "loss": 0.454,
669
+ "step": 92
670
+ },
671
+ {
672
+ "epoch": 0.28,
673
+ "grad_norm": 0.15920379757881165,
674
+ "learning_rate": 0.00016968119062005642,
675
+ "loss": 0.5333,
676
+ "step": 93
677
+ },
678
+ {
679
+ "epoch": 0.28,
680
+ "grad_norm": 0.1652740240097046,
681
+ "learning_rate": 0.00016898676344556118,
682
+ "loss": 0.5272,
683
+ "step": 94
684
+ },
685
+ {
686
+ "epoch": 0.28,
687
+ "grad_norm": 0.15505805611610413,
688
+ "learning_rate": 0.00016828592968072678,
689
+ "loss": 0.5429,
690
+ "step": 95
691
+ },
692
+ {
693
+ "epoch": 0.29,
694
+ "grad_norm": 0.16118398308753967,
695
+ "learning_rate": 0.00016757875440984768,
696
+ "loss": 0.4782,
697
+ "step": 96
698
+ },
699
+ {
700
+ "epoch": 0.29,
701
+ "grad_norm": 0.1549789011478424,
702
+ "learning_rate": 0.0001668653033061347,
703
+ "loss": 0.4594,
704
+ "step": 97
705
+ },
706
+ {
707
+ "epoch": 0.29,
708
+ "grad_norm": 0.1643325537443161,
709
+ "learning_rate": 0.00016614564262561608,
710
+ "loss": 0.5086,
711
+ "step": 98
712
+ },
713
+ {
714
+ "epoch": 0.29,
715
+ "grad_norm": 0.1949179321527481,
716
+ "learning_rate": 0.0001654198392009846,
717
+ "loss": 0.4052,
718
+ "step": 99
719
+ },
720
+ {
721
+ "epoch": 0.3,
722
+ "grad_norm": 0.1303270012140274,
723
+ "learning_rate": 0.0001646879604353908,
724
+ "loss": 0.4845,
725
+ "step": 100
726
+ },
727
+ {
728
+ "epoch": 0.3,
729
+ "grad_norm": 0.13640670478343964,
730
+ "learning_rate": 0.00016395007429618382,
731
+ "loss": 0.4459,
732
+ "step": 101
733
+ },
734
+ {
735
+ "epoch": 0.3,
736
+ "grad_norm": 0.18252772092819214,
737
+ "learning_rate": 0.00016320624930859904,
738
+ "loss": 0.523,
739
+ "step": 102
740
+ },
741
+ {
742
+ "epoch": 0.31,
743
+ "grad_norm": 0.16342373192310333,
744
+ "learning_rate": 0.00016245655454939474,
745
+ "loss": 0.4714,
746
+ "step": 103
747
+ },
748
+ {
749
+ "epoch": 0.31,
750
+ "grad_norm": 0.1418078988790512,
751
+ "learning_rate": 0.00016170105964043695,
752
+ "loss": 0.4841,
753
+ "step": 104
754
+ },
755
+ {
756
+ "epoch": 0.31,
757
+ "grad_norm": 0.15758009254932404,
758
+ "learning_rate": 0.0001609398347422339,
759
+ "loss": 0.3911,
760
+ "step": 105
761
+ },
762
+ {
763
+ "epoch": 0.31,
764
+ "grad_norm": 0.1476665586233139,
765
+ "learning_rate": 0.00016017295054742046,
766
+ "loss": 0.3962,
767
+ "step": 106
768
+ },
769
+ {
770
+ "epoch": 0.32,
771
+ "grad_norm": 0.14230811595916748,
772
+ "learning_rate": 0.00015940047827419303,
773
+ "loss": 0.4391,
774
+ "step": 107
775
+ },
776
+ {
777
+ "epoch": 0.32,
778
+ "grad_norm": 0.15269385278224945,
779
+ "learning_rate": 0.00015862248965969604,
780
+ "loss": 0.4992,
781
+ "step": 108
782
+ },
783
+ {
784
+ "epoch": 0.32,
785
+ "grad_norm": 0.14437031745910645,
786
+ "learning_rate": 0.00015783905695335946,
787
+ "loss": 0.4768,
788
+ "step": 109
789
+ },
790
+ {
791
+ "epoch": 0.33,
792
+ "grad_norm": 0.1448802649974823,
793
+ "learning_rate": 0.0001570502529101896,
794
+ "loss": 0.4469,
795
+ "step": 110
796
+ },
797
+ {
798
+ "epoch": 0.33,
799
+ "grad_norm": 0.1571648269891739,
800
+ "learning_rate": 0.00015625615078401244,
801
+ "loss": 0.4048,
802
+ "step": 111
803
+ },
804
+ {
805
+ "epoch": 0.33,
806
+ "grad_norm": 0.1563793420791626,
807
+ "learning_rate": 0.00015545682432067067,
808
+ "loss": 0.4518,
809
+ "step": 112
810
+ },
811
+ {
812
+ "epoch": 0.34,
813
+ "grad_norm": 0.1441984921693802,
814
+ "learning_rate": 0.0001546523477511754,
815
+ "loss": 0.497,
816
+ "step": 113
817
+ },
818
+ {
819
+ "epoch": 0.34,
820
+ "grad_norm": 0.13513916730880737,
821
+ "learning_rate": 0.00015384279578481221,
822
+ "loss": 0.4923,
823
+ "step": 114
824
+ },
825
+ {
826
+ "epoch": 0.34,
827
+ "grad_norm": 0.1501740962266922,
828
+ "learning_rate": 0.00015302824360220353,
829
+ "loss": 0.4701,
830
+ "step": 115
831
+ },
832
+ {
833
+ "epoch": 0.34,
834
+ "grad_norm": 0.2020605355501175,
835
+ "learning_rate": 0.00015220876684832638,
836
+ "loss": 0.4122,
837
+ "step": 116
838
+ },
839
+ {
840
+ "epoch": 0.35,
841
+ "grad_norm": 0.15191146731376648,
842
+ "learning_rate": 0.0001513844416254879,
843
+ "loss": 0.4432,
844
+ "step": 117
845
+ },
846
+ {
847
+ "epoch": 0.35,
848
+ "grad_norm": 0.1627548784017563,
849
+ "learning_rate": 0.00015055534448625766,
850
+ "loss": 0.4779,
851
+ "step": 118
852
+ },
853
+ {
854
+ "epoch": 0.35,
855
+ "grad_norm": 0.14043453335762024,
856
+ "learning_rate": 0.00014972155242635852,
857
+ "loss": 0.471,
858
+ "step": 119
859
+ },
860
+ {
861
+ "epoch": 0.36,
862
+ "grad_norm": 0.16092036664485931,
863
+ "learning_rate": 0.0001488831428775164,
864
+ "loss": 0.4543,
865
+ "step": 120
866
+ },
867
+ {
868
+ "epoch": 0.36,
869
+ "grad_norm": 0.1478460729122162,
870
+ "learning_rate": 0.00014804019370026926,
871
+ "loss": 0.4521,
872
+ "step": 121
873
+ },
874
+ {
875
+ "epoch": 0.36,
876
+ "grad_norm": 0.15067800879478455,
877
+ "learning_rate": 0.00014719278317673655,
878
+ "loss": 0.5665,
879
+ "step": 122
880
+ },
881
+ {
882
+ "epoch": 0.37,
883
+ "grad_norm": 0.16037791967391968,
884
+ "learning_rate": 0.0001463409900033493,
885
+ "loss": 0.5198,
886
+ "step": 123
887
+ },
888
+ {
889
+ "epoch": 0.37,
890
+ "grad_norm": 0.15850840508937836,
891
+ "learning_rate": 0.00014548489328354195,
892
+ "loss": 0.5183,
893
+ "step": 124
894
+ },
895
+ {
896
+ "epoch": 0.37,
897
+ "grad_norm": 0.13782666623592377,
898
+ "learning_rate": 0.00014462457252040607,
899
+ "loss": 0.4415,
900
+ "step": 125
901
+ },
902
+ {
903
+ "epoch": 0.37,
904
+ "grad_norm": 0.17566777765750885,
905
+ "learning_rate": 0.00014376010760930728,
906
+ "loss": 0.5166,
907
+ "step": 126
908
+ },
909
+ {
910
+ "epoch": 0.38,
911
+ "grad_norm": 0.14671465754508972,
912
+ "learning_rate": 0.00014289157883046568,
913
+ "loss": 0.454,
914
+ "step": 127
915
+ },
916
+ {
917
+ "epoch": 0.38,
918
+ "grad_norm": 0.14827768504619598,
919
+ "learning_rate": 0.0001420190668415002,
920
+ "loss": 0.3743,
921
+ "step": 128
922
+ },
923
+ {
924
+ "epoch": 0.38,
925
+ "grad_norm": 0.16858412325382233,
926
+ "learning_rate": 0.00014114265266993846,
927
+ "loss": 0.5204,
928
+ "step": 129
929
+ },
930
+ {
931
+ "epoch": 0.39,
932
+ "grad_norm": 0.14838969707489014,
933
+ "learning_rate": 0.00014026241770569197,
934
+ "loss": 0.5072,
935
+ "step": 130
936
+ },
937
+ {
938
+ "epoch": 0.39,
939
+ "grad_norm": 0.1676333248615265,
940
+ "learning_rate": 0.00013937844369349734,
941
+ "loss": 0.5026,
942
+ "step": 131
943
+ },
944
+ {
945
+ "epoch": 0.39,
946
+ "grad_norm": 0.1548876315355301,
947
+ "learning_rate": 0.00013849081272532544,
948
+ "loss": 0.4393,
949
+ "step": 132
950
+ },
951
+ {
952
+ "epoch": 0.4,
953
+ "grad_norm": 0.16387146711349487,
954
+ "learning_rate": 0.00013759960723275732,
955
+ "loss": 0.4899,
956
+ "step": 133
957
+ },
958
+ {
959
+ "epoch": 0.4,
960
+ "grad_norm": 0.15013404190540314,
961
+ "learning_rate": 0.00013670490997932922,
962
+ "loss": 0.4398,
963
+ "step": 134
964
+ },
965
+ {
966
+ "epoch": 0.4,
967
+ "grad_norm": 0.1466226577758789,
968
+ "learning_rate": 0.00013580680405284664,
969
+ "loss": 0.5087,
970
+ "step": 135
971
+ },
972
+ {
973
+ "epoch": 0.4,
974
+ "grad_norm": 0.15578770637512207,
975
+ "learning_rate": 0.00013490537285766808,
976
+ "loss": 0.4662,
977
+ "step": 136
978
+ },
979
+ {
980
+ "epoch": 0.41,
981
+ "grad_norm": 0.16825653612613678,
982
+ "learning_rate": 0.00013400070010695966,
983
+ "loss": 0.4826,
984
+ "step": 137
985
+ },
986
+ {
987
+ "epoch": 0.41,
988
+ "grad_norm": 0.15624648332595825,
989
+ "learning_rate": 0.00013309286981492085,
990
+ "loss": 0.4818,
991
+ "step": 138
992
+ },
993
+ {
994
+ "epoch": 0.41,
995
+ "grad_norm": 0.16185308992862701,
996
+ "learning_rate": 0.00013218196628898233,
997
+ "loss": 0.4848,
998
+ "step": 139
999
+ },
1000
+ {
1001
+ "epoch": 0.42,
1002
+ "grad_norm": 0.15799778699874878,
1003
+ "learning_rate": 0.00013126807412197665,
1004
+ "loss": 0.4456,
1005
+ "step": 140
1006
+ },
1007
+ {
1008
+ "epoch": 0.42,
1009
+ "grad_norm": 0.15358638763427734,
1010
+ "learning_rate": 0.0001303512781842824,
1011
+ "loss": 0.434,
1012
+ "step": 141
1013
+ },
1014
+ {
1015
+ "epoch": 0.42,
1016
+ "grad_norm": 0.14526773989200592,
1017
+ "learning_rate": 0.00012943166361594242,
1018
+ "loss": 0.4944,
1019
+ "step": 142
1020
+ },
1021
+ {
1022
+ "epoch": 0.42,
1023
+ "grad_norm": 0.1717992126941681,
1024
+ "learning_rate": 0.00012850931581875723,
1025
+ "loss": 0.4966,
1026
+ "step": 143
1027
+ },
1028
+ {
1029
+ "epoch": 0.43,
1030
+ "grad_norm": 0.14694097638130188,
1031
+ "learning_rate": 0.00012758432044835392,
1032
+ "loss": 0.4055,
1033
+ "step": 144
1034
+ },
1035
+ {
1036
+ "epoch": 0.43,
1037
+ "grad_norm": 0.17159771919250488,
1038
+ "learning_rate": 0.0001266567634062317,
1039
+ "loss": 0.4455,
1040
+ "step": 145
1041
+ },
1042
+ {
1043
+ "epoch": 0.43,
1044
+ "grad_norm": 0.16740797460079193,
1045
+ "learning_rate": 0.0001257267308317845,
1046
+ "loss": 0.3732,
1047
+ "step": 146
1048
+ },
1049
+ {
1050
+ "epoch": 0.44,
1051
+ "grad_norm": 0.14464697241783142,
1052
+ "learning_rate": 0.00012479430909430108,
1053
+ "loss": 0.4976,
1054
+ "step": 147
1055
+ },
1056
+ {
1057
+ "epoch": 0.44,
1058
+ "grad_norm": 0.15393030643463135,
1059
+ "learning_rate": 0.00012385958478494487,
1060
+ "loss": 0.3653,
1061
+ "step": 148
1062
+ },
1063
+ {
1064
+ "epoch": 0.44,
1065
+ "grad_norm": 0.15888682007789612,
1066
+ "learning_rate": 0.00012292264470871182,
1067
+ "loss": 0.4966,
1068
+ "step": 149
1069
+ },
1070
+ {
1071
+ "epoch": 0.45,
1072
+ "grad_norm": 0.14429794251918793,
1073
+ "learning_rate": 0.00012198357587636957,
1074
+ "loss": 0.4821,
1075
+ "step": 150
1076
+ },
1077
+ {
1078
+ "epoch": 0.45,
1079
+ "grad_norm": 0.15093272924423218,
1080
+ "learning_rate": 0.00012104246549637683,
1081
+ "loss": 0.4431,
1082
+ "step": 151
1083
+ },
1084
+ {
1085
+ "epoch": 0.45,
1086
+ "grad_norm": 0.16575871407985687,
1087
+ "learning_rate": 0.00012009940096678452,
1088
+ "loss": 0.4903,
1089
+ "step": 152
1090
+ },
1091
+ {
1092
+ "epoch": 0.45,
1093
+ "grad_norm": 0.15208427608013153,
1094
+ "learning_rate": 0.00011915446986711953,
1095
+ "loss": 0.4465,
1096
+ "step": 153
1097
+ },
1098
+ {
1099
+ "epoch": 0.46,
1100
+ "grad_norm": 0.16902336478233337,
1101
+ "learning_rate": 0.00011820775995025147,
1102
+ "loss": 0.4997,
1103
+ "step": 154
1104
+ },
1105
+ {
1106
+ "epoch": 0.46,
1107
+ "grad_norm": 0.1612280309200287,
1108
+ "learning_rate": 0.0001172593591342432,
1109
+ "loss": 0.4258,
1110
+ "step": 155
1111
+ },
1112
+ {
1113
+ "epoch": 0.46,
1114
+ "grad_norm": 0.14114782214164734,
1115
+ "learning_rate": 0.00011630935549418627,
1116
+ "loss": 0.5262,
1117
+ "step": 156
1118
+ },
1119
+ {
1120
+ "epoch": 0.47,
1121
+ "grad_norm": 0.16275247931480408,
1122
+ "learning_rate": 0.00011535783725402163,
1123
+ "loss": 0.4403,
1124
+ "step": 157
1125
+ },
1126
+ {
1127
+ "epoch": 0.47,
1128
+ "grad_norm": 0.1442529857158661,
1129
+ "learning_rate": 0.00011440489277834645,
1130
+ "loss": 0.479,
1131
+ "step": 158
1132
+ },
1133
+ {
1134
+ "epoch": 0.47,
1135
+ "grad_norm": 0.15231800079345703,
1136
+ "learning_rate": 0.0001134506105642081,
1137
+ "loss": 0.4856,
1138
+ "step": 159
1139
+ },
1140
+ {
1141
+ "epoch": 0.48,
1142
+ "grad_norm": 0.14390550553798676,
1143
+ "learning_rate": 0.00011249507923288562,
1144
+ "loss": 0.3665,
1145
+ "step": 160
1146
+ },
1147
+ {
1148
+ "epoch": 0.48,
1149
+ "grad_norm": 0.19076046347618103,
1150
+ "learning_rate": 0.0001115383875216598,
1151
+ "loss": 0.4423,
1152
+ "step": 161
1153
+ },
1154
+ {
1155
+ "epoch": 0.48,
1156
+ "grad_norm": 0.16523972153663635,
1157
+ "learning_rate": 0.00011058062427557229,
1158
+ "loss": 0.5816,
1159
+ "step": 162
1160
+ },
1161
+ {
1162
+ "epoch": 0.48,
1163
+ "grad_norm": 0.1553642749786377,
1164
+ "learning_rate": 0.00010962187843917497,
1165
+ "loss": 0.4793,
1166
+ "step": 163
1167
+ },
1168
+ {
1169
+ "epoch": 0.49,
1170
+ "grad_norm": 0.14419597387313843,
1171
+ "learning_rate": 0.0001086622390482699,
1172
+ "loss": 0.4862,
1173
+ "step": 164
1174
+ },
1175
+ {
1176
+ "epoch": 0.49,
1177
+ "grad_norm": 0.14601647853851318,
1178
+ "learning_rate": 0.00010770179522164079,
1179
+ "loss": 0.4589,
1180
+ "step": 165
1181
+ },
1182
+ {
1183
+ "epoch": 0.49,
1184
+ "grad_norm": 0.15500588715076447,
1185
+ "learning_rate": 0.0001067406361527768,
1186
+ "loss": 0.4754,
1187
+ "step": 166
1188
+ },
1189
+ {
1190
+ "epoch": 0.5,
1191
+ "grad_norm": 0.16032655537128448,
1192
+ "learning_rate": 0.00010577885110158958,
1193
+ "loss": 0.4644,
1194
+ "step": 167
1195
+ },
1196
+ {
1197
+ "epoch": 0.5,
1198
+ "grad_norm": 0.15342958271503448,
1199
+ "learning_rate": 0.00010481652938612374,
1200
+ "loss": 0.3911,
1201
+ "step": 168
1202
+ },
1203
+ {
1204
+ "epoch": 0.5,
1205
+ "eval_loss": 0.9589568972587585,
1206
+ "eval_runtime": 324.8473,
1207
+ "eval_samples_per_second": 0.767,
1208
+ "eval_steps_per_second": 0.767,
1209
+ "step": 168
1210
+ },
1211
+ {
1212
+ "epoch": 0.5,
1213
+ "grad_norm": 0.15607774257659912,
1214
+ "learning_rate": 0.00010385376037426226,
1215
+ "loss": 0.492,
1216
+ "step": 169
1217
+ },
1218
+ {
1219
+ "epoch": 0.51,
1220
+ "grad_norm": 0.15384891629219055,
1221
+ "learning_rate": 0.00010289063347542726,
1222
+ "loss": 0.487,
1223
+ "step": 170
1224
+ },
1225
+ {
1226
+ "epoch": 0.51,
1227
+ "grad_norm": 0.15275317430496216,
1228
+ "learning_rate": 0.00010192723813227672,
1229
+ "loss": 0.4475,
1230
+ "step": 171
1231
+ },
1232
+ {
1233
+ "epoch": 0.51,
1234
+ "grad_norm": 0.1687576025724411,
1235
+ "learning_rate": 0.00010096366381239808,
1236
+ "loss": 0.4491,
1237
+ "step": 172
1238
+ },
1239
+ {
1240
+ "epoch": 0.51,
1241
+ "grad_norm": 0.17867827415466309,
1242
+ "learning_rate": 0.0001,
1243
+ "loss": 0.4197,
1244
+ "step": 173
1245
+ },
1246
+ {
1247
+ "epoch": 0.52,
1248
+ "grad_norm": 0.14261119067668915,
1249
+ "learning_rate": 9.903633618760195e-05,
1250
+ "loss": 0.4734,
1251
+ "step": 174
1252
+ },
1253
+ {
1254
+ "epoch": 0.52,
1255
+ "grad_norm": 0.14787495136260986,
1256
+ "learning_rate": 9.807276186772333e-05,
1257
+ "loss": 0.404,
1258
+ "step": 175
1259
+ },
1260
+ {
1261
+ "epoch": 0.52,
1262
+ "grad_norm": 0.15715274214744568,
1263
+ "learning_rate": 9.710936652457276e-05,
1264
+ "loss": 0.4583,
1265
+ "step": 176
1266
+ },
1267
+ {
1268
+ "epoch": 0.53,
1269
+ "grad_norm": 0.1578068882226944,
1270
+ "learning_rate": 9.614623962573776e-05,
1271
+ "loss": 0.4343,
1272
+ "step": 177
1273
+ },
1274
+ {
1275
+ "epoch": 0.53,
1276
+ "grad_norm": 0.15597595274448395,
1277
+ "learning_rate": 9.518347061387628e-05,
1278
+ "loss": 0.4454,
1279
+ "step": 178
1280
+ },
1281
+ {
1282
+ "epoch": 0.53,
1283
+ "grad_norm": 0.142894446849823,
1284
+ "learning_rate": 9.422114889841044e-05,
1285
+ "loss": 0.4443,
1286
+ "step": 179
1287
+ },
1288
+ {
1289
+ "epoch": 0.53,
1290
+ "grad_norm": 0.15279816091060638,
1291
+ "learning_rate": 9.325936384722321e-05,
1292
+ "loss": 0.4428,
1293
+ "step": 180
1294
+ },
1295
+ {
1296
+ "epoch": 0.54,
1297
+ "grad_norm": 0.1651957929134369,
1298
+ "learning_rate": 9.229820477835927e-05,
1299
+ "loss": 0.3857,
1300
+ "step": 181
1301
+ },
1302
+ {
1303
+ "epoch": 0.54,
1304
+ "grad_norm": 0.22555674612522125,
1305
+ "learning_rate": 9.133776095173015e-05,
1306
+ "loss": 0.4578,
1307
+ "step": 182
1308
+ },
1309
+ {
1310
+ "epoch": 0.54,
1311
+ "grad_norm": 0.14163288474082947,
1312
+ "learning_rate": 9.037812156082504e-05,
1313
+ "loss": 0.4409,
1314
+ "step": 183
1315
+ },
1316
+ {
1317
+ "epoch": 0.55,
1318
+ "grad_norm": 0.1683199107646942,
1319
+ "learning_rate": 8.941937572442773e-05,
1320
+ "loss": 0.4829,
1321
+ "step": 184
1322
+ },
1323
+ {
1324
+ "epoch": 0.55,
1325
+ "grad_norm": 0.17766785621643066,
1326
+ "learning_rate": 8.846161247834024e-05,
1327
+ "loss": 0.4357,
1328
+ "step": 185
1329
+ },
1330
+ {
1331
+ "epoch": 0.55,
1332
+ "grad_norm": 0.15518875420093536,
1333
+ "learning_rate": 8.750492076711439e-05,
1334
+ "loss": 0.4681,
1335
+ "step": 186
1336
+ },
1337
+ {
1338
+ "epoch": 0.56,
1339
+ "grad_norm": 0.13920673727989197,
1340
+ "learning_rate": 8.654938943579194e-05,
1341
+ "loss": 0.4258,
1342
+ "step": 187
1343
+ },
1344
+ {
1345
+ "epoch": 0.56,
1346
+ "grad_norm": 0.17552931606769562,
1347
+ "learning_rate": 8.55951072216536e-05,
1348
+ "loss": 0.3932,
1349
+ "step": 188
1350
+ },
1351
+ {
1352
+ "epoch": 0.56,
1353
+ "grad_norm": 0.15486915409564972,
1354
+ "learning_rate": 8.464216274597838e-05,
1355
+ "loss": 0.4679,
1356
+ "step": 189
1357
+ },
1358
+ {
1359
+ "epoch": 0.56,
1360
+ "grad_norm": 0.1437031477689743,
1361
+ "learning_rate": 8.369064450581373e-05,
1362
+ "loss": 0.3984,
1363
+ "step": 190
1364
+ },
1365
+ {
1366
+ "epoch": 0.57,
1367
+ "grad_norm": 0.15499216318130493,
1368
+ "learning_rate": 8.274064086575681e-05,
1369
+ "loss": 0.5216,
1370
+ "step": 191
1371
+ },
1372
+ {
1373
+ "epoch": 0.57,
1374
+ "grad_norm": 0.18269003927707672,
1375
+ "learning_rate": 8.179224004974857e-05,
1376
+ "loss": 0.4853,
1377
+ "step": 192
1378
+ },
1379
+ {
1380
+ "epoch": 0.57,
1381
+ "grad_norm": 0.1596907526254654,
1382
+ "learning_rate": 8.084553013288048e-05,
1383
+ "loss": 0.4784,
1384
+ "step": 193
1385
+ },
1386
+ {
1387
+ "epoch": 0.58,
1388
+ "grad_norm": 0.15115347504615784,
1389
+ "learning_rate": 7.990059903321553e-05,
1390
+ "loss": 0.4306,
1391
+ "step": 194
1392
+ },
1393
+ {
1394
+ "epoch": 0.58,
1395
+ "grad_norm": 0.19720065593719482,
1396
+ "learning_rate": 7.89575345036232e-05,
1397
+ "loss": 0.4782,
1398
+ "step": 195
1399
+ },
1400
+ {
1401
+ "epoch": 0.58,
1402
+ "grad_norm": 0.14170032739639282,
1403
+ "learning_rate": 7.801642412363041e-05,
1404
+ "loss": 0.4318,
1405
+ "step": 196
1406
+ },
1407
+ {
1408
+ "epoch": 0.59,
1409
+ "grad_norm": 0.16026908159255981,
1410
+ "learning_rate": 7.707735529128819e-05,
1411
+ "loss": 0.4656,
1412
+ "step": 197
1413
+ },
1414
+ {
1415
+ "epoch": 0.59,
1416
+ "grad_norm": 0.16910114884376526,
1417
+ "learning_rate": 7.614041521505517e-05,
1418
+ "loss": 0.5014,
1419
+ "step": 198
1420
+ },
1421
+ {
1422
+ "epoch": 0.59,
1423
+ "grad_norm": 0.18795110285282135,
1424
+ "learning_rate": 7.520569090569893e-05,
1425
+ "loss": 0.4512,
1426
+ "step": 199
1427
+ },
1428
+ {
1429
+ "epoch": 0.59,
1430
+ "grad_norm": 0.15903539955615997,
1431
+ "learning_rate": 7.427326916821557e-05,
1432
+ "loss": 0.5036,
1433
+ "step": 200
1434
+ },
1435
+ {
1436
+ "epoch": 0.6,
1437
+ "grad_norm": 0.15247230231761932,
1438
+ "learning_rate": 7.334323659376829e-05,
1439
+ "loss": 0.4369,
1440
+ "step": 201
1441
+ },
1442
+ {
1443
+ "epoch": 0.6,
1444
+ "grad_norm": 0.1472063809633255,
1445
+ "learning_rate": 7.24156795516461e-05,
1446
+ "loss": 0.426,
1447
+ "step": 202
1448
+ },
1449
+ {
1450
+ "epoch": 0.6,
1451
+ "grad_norm": 0.15710321068763733,
1452
+ "learning_rate": 7.149068418124281e-05,
1453
+ "loss": 0.4034,
1454
+ "step": 203
1455
+ },
1456
+ {
1457
+ "epoch": 0.61,
1458
+ "grad_norm": 0.15857233107089996,
1459
+ "learning_rate": 7.056833638405762e-05,
1460
+ "loss": 0.4783,
1461
+ "step": 204
1462
+ },
1463
+ {
1464
+ "epoch": 0.61,
1465
+ "grad_norm": 0.16299530863761902,
1466
+ "learning_rate": 6.964872181571764e-05,
1467
+ "loss": 0.4719,
1468
+ "step": 205
1469
+ },
1470
+ {
1471
+ "epoch": 0.61,
1472
+ "grad_norm": 0.14976787567138672,
1473
+ "learning_rate": 6.87319258780234e-05,
1474
+ "loss": 0.4543,
1475
+ "step": 206
1476
+ },
1477
+ {
1478
+ "epoch": 0.61,
1479
+ "grad_norm": 0.14311917126178741,
1480
+ "learning_rate": 6.781803371101774e-05,
1481
+ "loss": 0.4422,
1482
+ "step": 207
1483
+ },
1484
+ {
1485
+ "epoch": 0.62,
1486
+ "grad_norm": 0.14494828879833221,
1487
+ "learning_rate": 6.690713018507918e-05,
1488
+ "loss": 0.4078,
1489
+ "step": 208
1490
+ },
1491
+ {
1492
+ "epoch": 0.62,
1493
+ "grad_norm": 0.1489972174167633,
1494
+ "learning_rate": 6.599929989304035e-05,
1495
+ "loss": 0.3908,
1496
+ "step": 209
1497
+ },
1498
+ {
1499
+ "epoch": 0.62,
1500
+ "grad_norm": 0.15475499629974365,
1501
+ "learning_rate": 6.509462714233195e-05,
1502
+ "loss": 0.5416,
1503
+ "step": 210
1504
+ },
1505
+ {
1506
+ "epoch": 0.63,
1507
+ "grad_norm": 0.1536937654018402,
1508
+ "learning_rate": 6.419319594715339e-05,
1509
+ "loss": 0.4267,
1510
+ "step": 211
1511
+ },
1512
+ {
1513
+ "epoch": 0.63,
1514
+ "grad_norm": 0.1654786467552185,
1515
+ "learning_rate": 6.32950900206708e-05,
1516
+ "loss": 0.4622,
1517
+ "step": 212
1518
+ },
1519
+ {
1520
+ "epoch": 0.63,
1521
+ "grad_norm": 0.14727674424648285,
1522
+ "learning_rate": 6.240039276724272e-05,
1523
+ "loss": 0.441,
1524
+ "step": 213
1525
+ },
1526
+ {
1527
+ "epoch": 0.64,
1528
+ "grad_norm": 0.1774049550294876,
1529
+ "learning_rate": 6.150918727467455e-05,
1530
+ "loss": 0.4956,
1531
+ "step": 214
1532
+ },
1533
+ {
1534
+ "epoch": 0.64,
1535
+ "grad_norm": 0.14867380261421204,
1536
+ "learning_rate": 6.062155630650265e-05,
1537
+ "loss": 0.5788,
1538
+ "step": 215
1539
+ },
1540
+ {
1541
+ "epoch": 0.64,
1542
+ "grad_norm": 0.16996605694293976,
1543
+ "learning_rate": 5.973758229430806e-05,
1544
+ "loss": 0.588,
1545
+ "step": 216
1546
+ },
1547
+ {
1548
+ "epoch": 0.64,
1549
+ "grad_norm": 0.15790195763111115,
1550
+ "learning_rate": 5.885734733006154e-05,
1551
+ "loss": 0.425,
1552
+ "step": 217
1553
+ },
1554
+ {
1555
+ "epoch": 0.65,
1556
+ "grad_norm": 0.15656080842018127,
1557
+ "learning_rate": 5.798093315849984e-05,
1558
+ "loss": 0.4193,
1559
+ "step": 218
1560
+ },
1561
+ {
1562
+ "epoch": 0.65,
1563
+ "grad_norm": 0.143330916762352,
1564
+ "learning_rate": 5.710842116953438e-05,
1565
+ "loss": 0.4427,
1566
+ "step": 219
1567
+ },
1568
+ {
1569
+ "epoch": 0.65,
1570
+ "grad_norm": 0.15389469265937805,
1571
+ "learning_rate": 5.623989239069275e-05,
1572
+ "loss": 0.4265,
1573
+ "step": 220
1574
+ },
1575
+ {
1576
+ "epoch": 0.66,
1577
+ "grad_norm": 0.16425251960754395,
1578
+ "learning_rate": 5.537542747959394e-05,
1579
+ "loss": 0.53,
1580
+ "step": 221
1581
+ },
1582
+ {
1583
+ "epoch": 0.66,
1584
+ "grad_norm": 0.1583469659090042,
1585
+ "learning_rate": 5.451510671645807e-05,
1586
+ "loss": 0.5009,
1587
+ "step": 222
1588
+ },
1589
+ {
1590
+ "epoch": 0.66,
1591
+ "grad_norm": 0.16075047850608826,
1592
+ "learning_rate": 5.36590099966507e-05,
1593
+ "loss": 0.5189,
1594
+ "step": 223
1595
+ },
1596
+ {
1597
+ "epoch": 0.67,
1598
+ "grad_norm": 0.14854145050048828,
1599
+ "learning_rate": 5.2807216823263484e-05,
1600
+ "loss": 0.463,
1601
+ "step": 224
1602
+ },
1603
+ {
1604
+ "epoch": 0.67,
1605
+ "grad_norm": 0.15285861492156982,
1606
+ "learning_rate": 5.1959806299730774e-05,
1607
+ "loss": 0.4413,
1608
+ "step": 225
1609
+ },
1610
+ {
1611
+ "epoch": 0.67,
1612
+ "grad_norm": 0.14538119733333588,
1613
+ "learning_rate": 5.111685712248364e-05,
1614
+ "loss": 0.4736,
1615
+ "step": 226
1616
+ },
1617
+ {
1618
+ "epoch": 0.67,
1619
+ "grad_norm": 0.15160393714904785,
1620
+ "learning_rate": 5.0278447573641495e-05,
1621
+ "loss": 0.4298,
1622
+ "step": 227
1623
+ },
1624
+ {
1625
+ "epoch": 0.68,
1626
+ "grad_norm": 0.14497333765029907,
1627
+ "learning_rate": 4.944465551374238e-05,
1628
+ "loss": 0.3981,
1629
+ "step": 228
1630
+ },
1631
+ {
1632
+ "epoch": 0.68,
1633
+ "grad_norm": 0.14342719316482544,
1634
+ "learning_rate": 4.861555837451213e-05,
1635
+ "loss": 0.4502,
1636
+ "step": 229
1637
+ },
1638
+ {
1639
+ "epoch": 0.68,
1640
+ "grad_norm": 0.1621183604001999,
1641
+ "learning_rate": 4.779123315167362e-05,
1642
+ "loss": 0.4322,
1643
+ "step": 230
1644
+ },
1645
+ {
1646
+ "epoch": 0.69,
1647
+ "grad_norm": 0.15252463519573212,
1648
+ "learning_rate": 4.6971756397796504e-05,
1649
+ "loss": 0.5072,
1650
+ "step": 231
1651
+ },
1652
+ {
1653
+ "epoch": 0.69,
1654
+ "grad_norm": 0.17667719721794128,
1655
+ "learning_rate": 4.61572042151878e-05,
1656
+ "loss": 0.4708,
1657
+ "step": 232
1658
+ },
1659
+ {
1660
+ "epoch": 0.69,
1661
+ "grad_norm": 0.15273234248161316,
1662
+ "learning_rate": 4.5347652248824624e-05,
1663
+ "loss": 0.5212,
1664
+ "step": 233
1665
+ },
1666
+ {
1667
+ "epoch": 0.7,
1668
+ "grad_norm": 0.16372352838516235,
1669
+ "learning_rate": 4.4543175679329344e-05,
1670
+ "loss": 0.5303,
1671
+ "step": 234
1672
+ },
1673
+ {
1674
+ "epoch": 0.7,
1675
+ "grad_norm": 0.14327646791934967,
1676
+ "learning_rate": 4.3743849215987595e-05,
1677
+ "loss": 0.4,
1678
+ "step": 235
1679
+ },
1680
+ {
1681
+ "epoch": 0.7,
1682
+ "grad_norm": 0.1604086011648178,
1683
+ "learning_rate": 4.294974708981041e-05,
1684
+ "loss": 0.4508,
1685
+ "step": 236
1686
+ },
1687
+ {
1688
+ "epoch": 0.7,
1689
+ "grad_norm": 0.23445452749729156,
1690
+ "learning_rate": 4.216094304664056e-05,
1691
+ "loss": 0.4363,
1692
+ "step": 237
1693
+ },
1694
+ {
1695
+ "epoch": 0.71,
1696
+ "grad_norm": 0.15834979712963104,
1697
+ "learning_rate": 4.137751034030399e-05,
1698
+ "loss": 0.5153,
1699
+ "step": 238
1700
+ },
1701
+ {
1702
+ "epoch": 0.71,
1703
+ "grad_norm": 0.14937692880630493,
1704
+ "learning_rate": 4.059952172580694e-05,
1705
+ "loss": 0.4423,
1706
+ "step": 239
1707
+ },
1708
+ {
1709
+ "epoch": 0.71,
1710
+ "grad_norm": 0.16776776313781738,
1711
+ "learning_rate": 3.982704945257957e-05,
1712
+ "loss": 0.4089,
1713
+ "step": 240
1714
+ },
1715
+ {
1716
+ "epoch": 0.72,
1717
+ "grad_norm": 0.16948916018009186,
1718
+ "learning_rate": 3.906016525776611e-05,
1719
+ "loss": 0.562,
1720
+ "step": 241
1721
+ },
1722
+ {
1723
+ "epoch": 0.72,
1724
+ "grad_norm": 0.16811306774616241,
1725
+ "learning_rate": 3.829894035956306e-05,
1726
+ "loss": 0.407,
1727
+ "step": 242
1728
+ },
1729
+ {
1730
+ "epoch": 0.72,
1731
+ "grad_norm": 0.13980595767498016,
1732
+ "learning_rate": 3.7543445450605285e-05,
1733
+ "loss": 0.4329,
1734
+ "step": 243
1735
+ },
1736
+ {
1737
+ "epoch": 0.72,
1738
+ "grad_norm": 0.16961558163166046,
1739
+ "learning_rate": 3.6793750691400994e-05,
1740
+ "loss": 0.4476,
1741
+ "step": 244
1742
+ },
1743
+ {
1744
+ "epoch": 0.73,
1745
+ "grad_norm": 0.16474933922290802,
1746
+ "learning_rate": 3.6049925703816214e-05,
1747
+ "loss": 0.4629,
1748
+ "step": 245
1749
+ },
1750
+ {
1751
+ "epoch": 0.73,
1752
+ "grad_norm": 0.1619129627943039,
1753
+ "learning_rate": 3.53120395646092e-05,
1754
+ "loss": 0.4648,
1755
+ "step": 246
1756
+ },
1757
+ {
1758
+ "epoch": 0.73,
1759
+ "grad_norm": 0.20941300690174103,
1760
+ "learning_rate": 3.458016079901544e-05,
1761
+ "loss": 0.4777,
1762
+ "step": 247
1763
+ },
1764
+ {
1765
+ "epoch": 0.74,
1766
+ "grad_norm": 0.1691591888666153,
1767
+ "learning_rate": 3.38543573743839e-05,
1768
+ "loss": 0.4544,
1769
+ "step": 248
1770
+ },
1771
+ {
1772
+ "epoch": 0.74,
1773
+ "grad_norm": 0.1482505053281784,
1774
+ "learning_rate": 3.3134696693865316e-05,
1775
+ "loss": 0.4295,
1776
+ "step": 249
1777
+ },
1778
+ {
1779
+ "epoch": 0.74,
1780
+ "grad_norm": 0.16560567915439606,
1781
+ "learning_rate": 3.242124559015234e-05,
1782
+ "loss": 0.4568,
1783
+ "step": 250
1784
+ },
1785
+ {
1786
+ "epoch": 0.75,
1787
+ "grad_norm": 0.15260429680347443,
1788
+ "learning_rate": 3.171407031927325e-05,
1789
+ "loss": 0.4311,
1790
+ "step": 251
1791
+ },
1792
+ {
1793
+ "epoch": 0.75,
1794
+ "grad_norm": 0.15556661784648895,
1795
+ "learning_rate": 3.101323655443882e-05,
1796
+ "loss": 0.4655,
1797
+ "step": 252
1798
+ },
1799
+ {
1800
+ "epoch": 0.75,
1801
+ "eval_loss": 0.9627882838249207,
1802
+ "eval_runtime": 320.8688,
1803
+ "eval_samples_per_second": 0.776,
1804
+ "eval_steps_per_second": 0.776,
1805
+ "step": 252
1806
+ },
1807
+ {
1808
+ "epoch": 0.75,
1809
+ "grad_norm": 0.16530689597129822,
1810
+ "learning_rate": 3.031880937994359e-05,
1811
+ "loss": 0.4532,
1812
+ "step": 253
1813
+ },
1814
+ {
1815
+ "epoch": 0.75,
1816
+ "grad_norm": 0.1501285582780838,
1817
+ "learning_rate": 2.9630853285121508e-05,
1818
+ "loss": 0.4538,
1819
+ "step": 254
1820
+ },
1821
+ {
1822
+ "epoch": 0.76,
1823
+ "grad_norm": 0.16318055987358093,
1824
+ "learning_rate": 2.894943215835708e-05,
1825
+ "loss": 0.4258,
1826
+ "step": 255
1827
+ },
1828
+ {
1829
+ "epoch": 0.76,
1830
+ "grad_norm": 0.15718339383602142,
1831
+ "learning_rate": 2.827460928115232e-05,
1832
+ "loss": 0.4724,
1833
+ "step": 256
1834
+ },
1835
+ {
1836
+ "epoch": 0.76,
1837
+ "grad_norm": 0.18563856184482574,
1838
+ "learning_rate": 2.7606447322249872e-05,
1839
+ "loss": 0.4064,
1840
+ "step": 257
1841
+ },
1842
+ {
1843
+ "epoch": 0.77,
1844
+ "grad_norm": 0.15688276290893555,
1845
+ "learning_rate": 2.6945008331813226e-05,
1846
+ "loss": 0.4399,
1847
+ "step": 258
1848
+ },
1849
+ {
1850
+ "epoch": 0.77,
1851
+ "grad_norm": 0.15704520046710968,
1852
+ "learning_rate": 2.629035373566433e-05,
1853
+ "loss": 0.4367,
1854
+ "step": 259
1855
+ },
1856
+ {
1857
+ "epoch": 0.77,
1858
+ "grad_norm": 0.1557130515575409,
1859
+ "learning_rate": 2.5642544329579088e-05,
1860
+ "loss": 0.4937,
1861
+ "step": 260
1862
+ },
1863
+ {
1864
+ "epoch": 0.78,
1865
+ "grad_norm": 0.16318149864673615,
1866
+ "learning_rate": 2.500164027364147e-05,
1867
+ "loss": 0.4891,
1868
+ "step": 261
1869
+ },
1870
+ {
1871
+ "epoch": 0.78,
1872
+ "grad_norm": 0.16402341425418854,
1873
+ "learning_rate": 2.4367701086656624e-05,
1874
+ "loss": 0.5084,
1875
+ "step": 262
1876
+ },
1877
+ {
1878
+ "epoch": 0.78,
1879
+ "grad_norm": 0.15349122881889343,
1880
+ "learning_rate": 2.3740785640623643e-05,
1881
+ "loss": 0.465,
1882
+ "step": 263
1883
+ },
1884
+ {
1885
+ "epoch": 0.78,
1886
+ "grad_norm": 0.16672901809215546,
1887
+ "learning_rate": 2.312095215526814e-05,
1888
+ "loss": 0.4428,
1889
+ "step": 264
1890
+ },
1891
+ {
1892
+ "epoch": 0.79,
1893
+ "grad_norm": 0.14176689088344574,
1894
+ "learning_rate": 2.2508258192635612e-05,
1895
+ "loss": 0.4012,
1896
+ "step": 265
1897
+ },
1898
+ {
1899
+ "epoch": 0.79,
1900
+ "grad_norm": 0.15022584795951843,
1901
+ "learning_rate": 2.1902760651745958e-05,
1902
+ "loss": 0.413,
1903
+ "step": 266
1904
+ },
1905
+ {
1906
+ "epoch": 0.79,
1907
+ "grad_norm": 0.15624596178531647,
1908
+ "learning_rate": 2.1304515763309253e-05,
1909
+ "loss": 0.4438,
1910
+ "step": 267
1911
+ },
1912
+ {
1913
+ "epoch": 0.8,
1914
+ "grad_norm": 0.15674558281898499,
1915
+ "learning_rate": 2.0713579084503876e-05,
1916
+ "loss": 0.3967,
1917
+ "step": 268
1918
+ },
1919
+ {
1920
+ "epoch": 0.8,
1921
+ "grad_norm": 0.16516539454460144,
1922
+ "learning_rate": 2.013000549381706e-05,
1923
+ "loss": 0.5009,
1924
+ "step": 269
1925
+ },
1926
+ {
1927
+ "epoch": 0.8,
1928
+ "grad_norm": 0.15163196623325348,
1929
+ "learning_rate": 1.9553849185948512e-05,
1930
+ "loss": 0.4626,
1931
+ "step": 270
1932
+ },
1933
+ {
1934
+ "epoch": 0.81,
1935
+ "grad_norm": 0.15535032749176025,
1936
+ "learning_rate": 1.8985163666777473e-05,
1937
+ "loss": 0.5294,
1938
+ "step": 271
1939
+ },
1940
+ {
1941
+ "epoch": 0.81,
1942
+ "grad_norm": 0.1474699229001999,
1943
+ "learning_rate": 1.8424001748393905e-05,
1944
+ "loss": 0.4898,
1945
+ "step": 272
1946
+ },
1947
+ {
1948
+ "epoch": 0.81,
1949
+ "grad_norm": 0.14586691558361053,
1950
+ "learning_rate": 1.787041554419381e-05,
1951
+ "loss": 0.3786,
1952
+ "step": 273
1953
+ },
1954
+ {
1955
+ "epoch": 0.81,
1956
+ "grad_norm": 0.14684820175170898,
1957
+ "learning_rate": 1.7324456464039752e-05,
1958
+ "loss": 0.3862,
1959
+ "step": 274
1960
+ },
1961
+ {
1962
+ "epoch": 0.82,
1963
+ "grad_norm": 0.15825559198856354,
1964
+ "learning_rate": 1.6786175209486566e-05,
1965
+ "loss": 0.4631,
1966
+ "step": 275
1967
+ },
1968
+ {
1969
+ "epoch": 0.82,
1970
+ "grad_norm": 0.1755644828081131,
1971
+ "learning_rate": 1.6255621769072805e-05,
1972
+ "loss": 0.3825,
1973
+ "step": 276
1974
+ },
1975
+ {
1976
+ "epoch": 0.82,
1977
+ "grad_norm": 0.15722620487213135,
1978
+ "learning_rate": 1.5732845413678477e-05,
1979
+ "loss": 0.4219,
1980
+ "step": 277
1981
+ },
1982
+ {
1983
+ "epoch": 0.83,
1984
+ "grad_norm": 0.1658666431903839,
1985
+ "learning_rate": 1.521789469194952e-05,
1986
+ "loss": 0.45,
1987
+ "step": 278
1988
+ },
1989
+ {
1990
+ "epoch": 0.83,
1991
+ "grad_norm": 0.13978326320648193,
1992
+ "learning_rate": 1.4710817425789014e-05,
1993
+ "loss": 0.4063,
1994
+ "step": 279
1995
+ },
1996
+ {
1997
+ "epoch": 0.83,
1998
+ "grad_norm": 0.17951220273971558,
1999
+ "learning_rate": 1.4211660705916285e-05,
2000
+ "loss": 0.4697,
2001
+ "step": 280
2002
+ },
2003
+ {
2004
+ "epoch": 0.83,
2005
+ "grad_norm": 0.1507434844970703,
2006
+ "learning_rate": 1.3720470887493719e-05,
2007
+ "loss": 0.4618,
2008
+ "step": 281
2009
+ },
2010
+ {
2011
+ "epoch": 0.84,
2012
+ "grad_norm": 0.1491430401802063,
2013
+ "learning_rate": 1.3237293585821786e-05,
2014
+ "loss": 0.4294,
2015
+ "step": 282
2016
+ },
2017
+ {
2018
+ "epoch": 0.84,
2019
+ "grad_norm": 0.15942510962486267,
2020
+ "learning_rate": 1.2762173672102996e-05,
2021
+ "loss": 0.4503,
2022
+ "step": 283
2023
+ },
2024
+ {
2025
+ "epoch": 0.84,
2026
+ "grad_norm": 0.16852998733520508,
2027
+ "learning_rate": 1.2295155269274827e-05,
2028
+ "loss": 0.5253,
2029
+ "step": 284
2030
+ },
2031
+ {
2032
+ "epoch": 0.85,
2033
+ "grad_norm": 0.15177421271800995,
2034
+ "learning_rate": 1.1836281747912125e-05,
2035
+ "loss": 0.4395,
2036
+ "step": 285
2037
+ },
2038
+ {
2039
+ "epoch": 0.85,
2040
+ "grad_norm": 0.14927661418914795,
2041
+ "learning_rate": 1.1385595722199438e-05,
2042
+ "loss": 0.463,
2043
+ "step": 286
2044
+ },
2045
+ {
2046
+ "epoch": 0.85,
2047
+ "grad_norm": 0.186951145529747,
2048
+ "learning_rate": 1.0943139045973549e-05,
2049
+ "loss": 0.4683,
2050
+ "step": 287
2051
+ },
2052
+ {
2053
+ "epoch": 0.86,
2054
+ "grad_norm": 0.16321802139282227,
2055
+ "learning_rate": 1.050895280883668e-05,
2056
+ "loss": 0.478,
2057
+ "step": 288
2058
+ },
2059
+ {
2060
+ "epoch": 0.86,
2061
+ "grad_norm": 0.15494760870933533,
2062
+ "learning_rate": 1.0083077332340562e-05,
2063
+ "loss": 0.4524,
2064
+ "step": 289
2065
+ },
2066
+ {
2067
+ "epoch": 0.86,
2068
+ "grad_norm": 0.1643322855234146,
2069
+ "learning_rate": 9.665552166241964e-06,
2070
+ "loss": 0.514,
2071
+ "step": 290
2072
+ },
2073
+ {
2074
+ "epoch": 0.86,
2075
+ "grad_norm": 0.1540500372648239,
2076
+ "learning_rate": 9.256416084829778e-06,
2077
+ "loss": 0.5143,
2078
+ "step": 291
2079
+ },
2080
+ {
2081
+ "epoch": 0.87,
2082
+ "grad_norm": 0.17111855745315552,
2083
+ "learning_rate": 8.855707083324183e-06,
2084
+ "loss": 0.4618,
2085
+ "step": 292
2086
+ },
2087
+ {
2088
+ "epoch": 0.87,
2089
+ "grad_norm": 0.1491898000240326,
2090
+ "learning_rate": 8.46346237434813e-06,
2091
+ "loss": 0.413,
2092
+ "step": 293
2093
+ },
2094
+ {
2095
+ "epoch": 0.87,
2096
+ "grad_norm": 0.16696412861347198,
2097
+ "learning_rate": 8.079718384471557e-06,
2098
+ "loss": 0.4021,
2099
+ "step": 294
2100
+ },
2101
+ {
2102
+ "epoch": 0.88,
2103
+ "grad_norm": 0.16858446598052979,
2104
+ "learning_rate": 7.704510750828542e-06,
2105
+ "loss": 0.4751,
2106
+ "step": 295
2107
+ },
2108
+ {
2109
+ "epoch": 0.88,
2110
+ "grad_norm": 0.1504489928483963,
2111
+ "learning_rate": 7.337874317807802e-06,
2112
+ "loss": 0.398,
2113
+ "step": 296
2114
+ },
2115
+ {
2116
+ "epoch": 0.88,
2117
+ "grad_norm": 0.183710977435112,
2118
+ "learning_rate": 6.979843133816743e-06,
2119
+ "loss": 0.4214,
2120
+ "step": 297
2121
+ },
2122
+ {
2123
+ "epoch": 0.89,
2124
+ "grad_norm": 0.16924622654914856,
2125
+ "learning_rate": 6.630450448119618e-06,
2126
+ "loss": 0.4698,
2127
+ "step": 298
2128
+ },
2129
+ {
2130
+ "epoch": 0.89,
2131
+ "grad_norm": 0.16073620319366455,
2132
+ "learning_rate": 6.289728707749609e-06,
2133
+ "loss": 0.509,
2134
+ "step": 299
2135
+ },
2136
+ {
2137
+ "epoch": 0.89,
2138
+ "grad_norm": 0.1766895204782486,
2139
+ "learning_rate": 5.957709554495683e-06,
2140
+ "loss": 0.4978,
2141
+ "step": 300
2142
+ },
2143
+ {
2144
+ "epoch": 0.89,
2145
+ "grad_norm": 0.17092542350292206,
2146
+ "learning_rate": 5.634423821964074e-06,
2147
+ "loss": 0.4194,
2148
+ "step": 301
2149
+ },
2150
+ {
2151
+ "epoch": 0.9,
2152
+ "grad_norm": 0.1549624800682068,
2153
+ "learning_rate": 5.319901532714877e-06,
2154
+ "loss": 0.4529,
2155
+ "step": 302
2156
+ },
2157
+ {
2158
+ "epoch": 0.9,
2159
+ "grad_norm": 0.16290757060050964,
2160
+ "learning_rate": 5.014171895473929e-06,
2161
+ "loss": 0.4134,
2162
+ "step": 303
2163
+ },
2164
+ {
2165
+ "epoch": 0.9,
2166
+ "grad_norm": 0.1581151932477951,
2167
+ "learning_rate": 4.717263302420283e-06,
2168
+ "loss": 0.4456,
2169
+ "step": 304
2170
+ },
2171
+ {
2172
+ "epoch": 0.91,
2173
+ "grad_norm": 0.16641291975975037,
2174
+ "learning_rate": 4.429203326549525e-06,
2175
+ "loss": 0.463,
2176
+ "step": 305
2177
+ },
2178
+ {
2179
+ "epoch": 0.91,
2180
+ "grad_norm": 0.1655256152153015,
2181
+ "learning_rate": 4.1500187191131466e-06,
2182
+ "loss": 0.4648,
2183
+ "step": 306
2184
+ },
2185
+ {
2186
+ "epoch": 0.91,
2187
+ "grad_norm": 0.16075529158115387,
2188
+ "learning_rate": 3.879735407134244e-06,
2189
+ "loss": 0.4838,
2190
+ "step": 307
2191
+ },
2192
+ {
2193
+ "epoch": 0.91,
2194
+ "grad_norm": 0.17388100922107697,
2195
+ "learning_rate": 3.6183784909997187e-06,
2196
+ "loss": 0.4453,
2197
+ "step": 308
2198
+ },
2199
+ {
2200
+ "epoch": 0.92,
2201
+ "grad_norm": 0.15238863229751587,
2202
+ "learning_rate": 3.3659722421293783e-06,
2203
+ "loss": 0.492,
2204
+ "step": 309
2205
+ },
2206
+ {
2207
+ "epoch": 0.92,
2208
+ "grad_norm": 0.1615055352449417,
2209
+ "learning_rate": 3.1225401007217936e-06,
2210
+ "loss": 0.4442,
2211
+ "step": 310
2212
+ },
2213
+ {
2214
+ "epoch": 0.92,
2215
+ "grad_norm": 0.14086954295635223,
2216
+ "learning_rate": 2.8881046735775742e-06,
2217
+ "loss": 0.3575,
2218
+ "step": 311
2219
+ },
2220
+ {
2221
+ "epoch": 0.93,
2222
+ "grad_norm": 0.2627798914909363,
2223
+ "learning_rate": 2.66268773199988e-06,
2224
+ "loss": 0.4517,
2225
+ "step": 312
2226
+ },
2227
+ {
2228
+ "epoch": 0.93,
2229
+ "grad_norm": 0.16790565848350525,
2230
+ "learning_rate": 2.446310209772684e-06,
2231
+ "loss": 0.4654,
2232
+ "step": 313
2233
+ },
2234
+ {
2235
+ "epoch": 0.93,
2236
+ "grad_norm": 0.16735273599624634,
2237
+ "learning_rate": 2.2389922012165944e-06,
2238
+ "loss": 0.4681,
2239
+ "step": 314
2240
+ },
2241
+ {
2242
+ "epoch": 0.94,
2243
+ "grad_norm": 0.14851590991020203,
2244
+ "learning_rate": 2.0407529593228116e-06,
2245
+ "loss": 0.4367,
2246
+ "step": 315
2247
+ },
2248
+ {
2249
+ "epoch": 0.94,
2250
+ "grad_norm": 0.15848883986473083,
2251
+ "learning_rate": 1.8516108939651945e-06,
2252
+ "loss": 0.4876,
2253
+ "step": 316
2254
+ },
2255
+ {
2256
+ "epoch": 0.94,
2257
+ "grad_norm": 0.16141897439956665,
2258
+ "learning_rate": 1.6715835701905603e-06,
2259
+ "loss": 0.4772,
2260
+ "step": 317
2261
+ },
2262
+ {
2263
+ "epoch": 0.94,
2264
+ "grad_norm": 0.1615990400314331,
2265
+ "learning_rate": 1.5006877065874336e-06,
2266
+ "loss": 0.5161,
2267
+ "step": 318
2268
+ },
2269
+ {
2270
+ "epoch": 0.95,
2271
+ "grad_norm": 0.14088964462280273,
2272
+ "learning_rate": 1.3389391737335112e-06,
2273
+ "loss": 0.4474,
2274
+ "step": 319
2275
+ },
2276
+ {
2277
+ "epoch": 0.95,
2278
+ "grad_norm": 0.15512192249298096,
2279
+ "learning_rate": 1.1863529927217732e-06,
2280
+ "loss": 0.4444,
2281
+ "step": 320
2282
+ },
2283
+ {
2284
+ "epoch": 0.95,
2285
+ "grad_norm": 0.14642339944839478,
2286
+ "learning_rate": 1.0429433337655115e-06,
2287
+ "loss": 0.4234,
2288
+ "step": 321
2289
+ },
2290
+ {
2291
+ "epoch": 0.96,
2292
+ "grad_norm": 0.16831575334072113,
2293
+ "learning_rate": 9.087235148824368e-07,
2294
+ "loss": 0.4631,
2295
+ "step": 322
2296
+ },
2297
+ {
2298
+ "epoch": 0.96,
2299
+ "grad_norm": 0.16404962539672852,
2300
+ "learning_rate": 7.837060006577801e-07,
2301
+ "loss": 0.5365,
2302
+ "step": 323
2303
+ },
2304
+ {
2305
+ "epoch": 0.96,
2306
+ "grad_norm": 0.15236851572990417,
2307
+ "learning_rate": 6.679024010868618e-07,
2308
+ "loss": 0.4675,
2309
+ "step": 324
2310
+ },
2311
+ {
2312
+ "epoch": 0.97,
2313
+ "grad_norm": 0.1572081297636032,
2314
+ "learning_rate": 5.613234704967996e-07,
2315
+ "loss": 0.4364,
2316
+ "step": 325
2317
+ },
2318
+ {
2319
+ "epoch": 0.97,
2320
+ "grad_norm": 0.15015996992588043,
2321
+ "learning_rate": 4.639791065478738e-07,
2322
+ "loss": 0.4466,
2323
+ "step": 326
2324
+ },
2325
+ {
2326
+ "epoch": 0.97,
2327
+ "grad_norm": 0.1579872965812683,
2328
+ "learning_rate": 3.758783493142737e-07,
2329
+ "loss": 0.5068,
2330
+ "step": 327
2331
+ },
2332
+ {
2333
+ "epoch": 0.97,
2334
+ "grad_norm": 0.1496421992778778,
2335
+ "learning_rate": 2.9702938044468e-07,
2336
+ "loss": 0.3996,
2337
+ "step": 328
2338
+ },
2339
+ {
2340
+ "epoch": 0.98,
2341
+ "grad_norm": 0.14979000389575958,
2342
+ "learning_rate": 2.2743952240236176e-07,
2343
+ "loss": 0.4681,
2344
+ "step": 329
2345
+ },
2346
+ {
2347
+ "epoch": 0.98,
2348
+ "grad_norm": 0.1566384732723236,
2349
+ "learning_rate": 1.6711523778520921e-07,
2350
+ "loss": 0.4222,
2351
+ "step": 330
2352
+ },
2353
+ {
2354
+ "epoch": 0.98,
2355
+ "grad_norm": 0.15907008945941925,
2356
+ "learning_rate": 1.1606212872559141e-07,
2357
+ "loss": 0.4386,
2358
+ "step": 331
2359
+ },
2360
+ {
2361
+ "epoch": 0.99,
2362
+ "grad_norm": 0.1623019427061081,
2363
+ "learning_rate": 7.428493637002821e-08,
2364
+ "loss": 0.4347,
2365
+ "step": 332
2366
+ },
2367
+ {
2368
+ "epoch": 0.99,
2369
+ "grad_norm": 0.1848601996898651,
2370
+ "learning_rate": 4.178754043898669e-08,
2371
+ "loss": 0.4431,
2372
+ "step": 333
2373
+ },
2374
+ {
2375
+ "epoch": 0.99,
2376
+ "grad_norm": 0.1645398586988449,
2377
+ "learning_rate": 1.8572958866514e-08,
2378
+ "loss": 0.4556,
2379
+ "step": 334
2380
+ },
2381
+ {
2382
+ "epoch": 1.0,
2383
+ "grad_norm": 0.1536179780960083,
2384
+ "learning_rate": 4.643347520005836e-09,
2385
+ "loss": 0.4282,
2386
+ "step": 335
2387
+ },
2388
+ {
2389
+ "epoch": 1.0,
2390
+ "grad_norm": 0.15975765883922577,
2391
+ "learning_rate": 0.0,
2392
+ "loss": 0.4569,
2393
+ "step": 336
2394
+ },
2395
+ {
2396
+ "epoch": 1.0,
2397
+ "eval_loss": 0.9572544097900391,
2398
+ "eval_runtime": 320.7126,
2399
+ "eval_samples_per_second": 0.776,
2400
+ "eval_steps_per_second": 0.776,
2401
+ "step": 336
2402
+ }
2403
+ ],
2404
+ "logging_steps": 1,
2405
+ "max_steps": 336,
2406
+ "num_input_tokens_seen": 0,
2407
+ "num_train_epochs": 1,
2408
+ "save_steps": 84,
2409
+ "total_flos": 3.406567632525066e+18,
2410
+ "train_batch_size": 1,
2411
+ "trial_name": null,
2412
+ "trial_params": null
2413
+ }
checkpoint-336/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e92cf4d819bd687a107f49060d4cb816ff788627c8bf6c0b866a032bb83436a5
3
+ size 5816
config.json CHANGED
@@ -40,15 +40,13 @@
40
  "quantization_config": {
41
  "_load_in_4bit": true,
42
  "_load_in_8bit": false,
43
- "bnb_4bit_compute_dtype": "float32",
44
- "bnb_4bit_quant_storage": "uint8",
45
- "bnb_4bit_quant_type": "fp4",
46
- "bnb_4bit_use_double_quant": false,
47
  "llm_int8_enable_fp32_cpu_offload": false,
48
  "llm_int8_has_fp16_weight": false,
49
- "llm_int8_skip_modules": [
50
- "mamba"
51
- ],
52
  "llm_int8_threshold": 6.0,
53
  "load_in_4bit": true,
54
  "load_in_8bit": false,
@@ -58,9 +56,9 @@
58
  "router_aux_loss_coef": 0.001,
59
  "sliding_window": null,
60
  "tie_word_embeddings": false,
61
- "torch_dtype": "float16",
62
  "transformers_version": "4.40.0.dev0",
63
- "use_cache": true,
64
  "use_mamba_kernels": true,
65
  "vocab_size": 65536
66
  }
 
40
  "quantization_config": {
41
  "_load_in_4bit": true,
42
  "_load_in_8bit": false,
43
+ "bnb_4bit_compute_dtype": "bfloat16",
44
+ "bnb_4bit_quant_storage": "float32",
45
+ "bnb_4bit_quant_type": "nf4",
46
+ "bnb_4bit_use_double_quant": true,
47
  "llm_int8_enable_fp32_cpu_offload": false,
48
  "llm_int8_has_fp16_weight": false,
49
+ "llm_int8_skip_modules": null,
 
 
50
  "llm_int8_threshold": 6.0,
51
  "load_in_4bit": true,
52
  "load_in_8bit": false,
 
56
  "router_aux_loss_coef": 0.001,
57
  "sliding_window": null,
58
  "tie_word_embeddings": false,
59
+ "torch_dtype": "bfloat16",
60
  "transformers_version": "4.40.0.dev0",
61
+ "use_cache": false,
62
  "use_mamba_kernels": true,
63
  "vocab_size": 65536
64
  }
tokenizer_config.json CHANGED
@@ -36,6 +36,7 @@
36
  }
37
  },
38
  "bos_token": "<|startoftext|>",
 
39
  "clean_up_tokenization_spaces": false,
40
  "eos_token": "<|endoftext|>",
41
  "model_max_length": 1000000000000000019884624838656,
 
36
  }
37
  },
38
  "bos_token": "<|startoftext|>",
39
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
40
  "clean_up_tokenization_spaces": false,
41
  "eos_token": "<|endoftext|>",
42
  "model_max_length": 1000000000000000019884624838656,