Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- merge
|
5 |
+
- mergekit
|
6 |
+
- lazymergekit
|
7 |
+
- fblgit/UNA-TheBeagle-7b-v1
|
8 |
+
- argilla/distilabeled-Marcoro14-7B-slerp
|
9 |
+
- dpo
|
10 |
+
- rlhf
|
11 |
+
---
|
12 |
+
|
13 |
+
![](https://i.imgur.com/89ZAKcn.png)
|
14 |
+
|
15 |
+
# NeuralBeagle14-7B
|
16 |
+
|
17 |
+
**Update 01/16/24: NeuralBeagle14-7B is probably the best 7B model you can find. π**
|
18 |
+
|
19 |
+
NeuralBeagle14-7B is a DPO fine-tune of [mlabonne/Beagle14-7B](https://huggingface.co/mlabonne/Beagle14-7B) using the [argilla/distilabel-intel-orca-dpo-pairs](https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs) preference dataset and my DPO notebook from [this article](https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac).
|
20 |
+
|
21 |
+
Thanks [Argilla](https://huggingface.co/argilla) for providing the dataset and the training recipe [here](https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp). πͺ
|
22 |
+
|
23 |
+
## π Evaluation
|
24 |
+
|
25 |
+
The evaluation was performed using [LLM AutoEval](https://github.com/mlabonne/llm-autoeval) on Nous suite. It is the best 7B model to date.
|
26 |
+
|
27 |
+
| Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
|
28 |
+
|---|---:|---:|---:|---:|---:|
|
29 |
+
| [**mlabonne/NeuralBeagle14-7B**](https://huggingface.co/mlabonne/NeuralBeagle14-7B) [π](https://gist.github.com/mlabonne/ad0c665bbe581c8420136c3b52b3c15c) | **60.25** | **46.06** | **76.77** | **70.32** | **47.86** |
|
30 |
+
| [mlabonne/Beagle14-7B](https://huggingface.co/mlabonne/Beagle14-7B) [π](https://gist.github.com/mlabonne/f5a5bf8c0827bbec2f05b97cc62d642c) | 59.4 | 44.38 | 76.53 | 69.44 | 47.25 |
|
31 |
+
| [mlabonne/NeuralDaredevil-7B](https://huggingface.co/mlabonne/NeuralDaredevil-7B) [π](https://gist.github.com/mlabonne/cbeb077d1df71cb81c78f742f19f4155) | 59.39 | 45.23 | 76.2 | 67.61 | 48.52 |
|
32 |
+
| [argilla/distilabeled-Marcoro14-7B-slerp](https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp) [π](https://gist.github.com/mlabonne/9082c4e59f4d3f3543c5eda3f4807040) | 58.93 | 45.38 | 76.48 | 65.68 | 48.18 |
|
33 |
+
| [mlabonne/NeuralMarcoro14-7B](https://huggingface.co/mlabonne/NeuralMarcoro14-7B) [π](https://gist.github.com/mlabonne/b31572a4711c945a4827e7242cfc4b9d) | 58.4 | 44.59 | 76.17 | 65.94 | 46.9 |
|
34 |
+
| [openchat/openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106) [π](https://gist.github.com/mlabonne/1afab87b543b0717ec08722cf086dcc3) | 53.71 | 44.17 | 73.72 | 52.53 | 44.4 |
|
35 |
+
| [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) [π](https://gist.github.com/mlabonne/88b21dd9698ffed75d6163ebdc2f6cc8) | 52.42 | 42.75 | 72.99 | 52.99 | 40.94 |
|
36 |
+
|
37 |
+
You can find the complete benchmark on [YALL - Yet Another LLM Leaderboard](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard).
|
38 |
+
|
39 |
+
It's also on top of the Open LLM Leaderboard:
|
40 |
+
|
41 |
+
![](https://i.imgur.com/62gUTFn.png)
|
42 |
+
|
43 |
+
Compared to Beagle14, there's no improvement in this benchmark. This might be due to an unlucky run, but I think I might be overexploiting argilla/distilabel-intel-orca-dpo-pairs at this point. Another preference dataset could improve it even further. Note that the Beagle models perform better than Turdus, which is purposely contaminated on Winogrande (very high score).
|
44 |
+
|
45 |
+
## π» Usage
|
46 |
+
|
47 |
+
```python
|
48 |
+
!pip install -qU transformers accelerate
|
49 |
+
|
50 |
+
from transformers import AutoTokenizer
|
51 |
+
import transformers
|
52 |
+
import torch
|
53 |
+
|
54 |
+
model = "mlabonne/NeuralBeagle14-7B"
|
55 |
+
messages = [{"role": "user", "content": "What is a large language model?"}]
|
56 |
+
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
58 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
59 |
+
pipeline = transformers.pipeline(
|
60 |
+
"text-generation",
|
61 |
+
model=model,
|
62 |
+
torch_dtype=torch.float16,
|
63 |
+
device_map="auto",
|
64 |
+
)
|
65 |
+
|
66 |
+
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
67 |
+
print(outputs[0]["generated_text"])
|
68 |
+
```
|
69 |
+
|
70 |
+
<p align="center">
|
71 |
+
<a href="https://github.com/argilla-io/distilabel">
|
72 |
+
<img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/>
|
73 |
+
</a>
|
74 |
+
</p>
|