File size: 5,585 Bytes
68ff49c
52e40d4
820420c
68ff49c
 
 
 
 
 
 
 
33f76dd
 
6afe488
68ff49c
6afe488
53c6128
33f76dd
68ff49c
c21a08b
4079cdf
 
c21a08b
68ff49c
 
2692262
 
a486a79
5fb2359
a486a79
 
 
5fb2359
6afe488
 
 
5bcde36
 
 
6afe488
68ff49c
 
6afe488
 
 
 
 
 
 
 
 
 
 
 
 
 
53c6128
68ff49c
 
 
53c6128
68ff49c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
---
license: cc-by-nc-4.0
base_model: mlabonne/Beagle14-7B
tags:
- merge
- mergekit
- lazymergekit
- dpo
- rlhf
---

![](https://i.imgur.com/89ZAKcn.png)

# 🐢 NeuralBeagle14-7B

**Update 01/16/24: NeuralBeagle14-7B is (probably) the best 7B model you can find! πŸŽ‰**

NeuralBeagle14-7B is a DPO fine-tune of [mlabonne/Beagle14-7B](https://huggingface.co/mlabonne/Beagle14-7B) using the [argilla/distilabel-intel-orca-dpo-pairs](https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs) preference dataset and my DPO notebook from [this article](https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac).

It is based on a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [fblgit/UNA-TheBeagle-7b-v1](https://huggingface.co/fblgit/UNA-TheBeagle-7b-v1), based on jondurbin's [repo](https://github.com/jondurbin/bagel) and [jondurbin/bagel-v0.3](https://huggingface.co/datasets/jondurbin/bagel-v0.3])
* [argilla/distilabeled-Marcoro14-7B-slerp](https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp), based on [mlabonne/Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp)

Thanks [Argilla](https://huggingface.co/argilla) for providing the dataset and the training recipe [here](https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp). πŸ’ͺ

You can try it out in this [Space](https://huggingface.co/spaces/mlabonne/NeuralBeagle14-7B-GGUF-Chat) (GGUF Q4_K_M).

## πŸ” Applications

This model uses a context window of 8k. It is compatible with different templates, like chatml and Llama's chat template.

Compared to other 7B models, it displays good performance in instruction following and reasoning tasks. It can also be used for RP and storytelling.

## ⚑ Quantized models

* **GGUF**: https://huggingface.co/mlabonne/NeuralBeagle14-7B-GGUF
* **GPTQ**: https://huggingface.co/TheBloke/NeuralBeagle14-7B-GPTQ
* **AWQ**: https://huggingface.co/TheBloke/NeuralBeagle14-7B-AWQ
* **EXL2**: https://huggingface.co/LoneStriker/NeuralBeagle14-7B-8.0bpw-h8-exl2

## πŸ† Evaluation

### Open LLM Leaderboard

NeuralBeagle14-7B ranks first on the Open LLM Leaderboard in the ~7B category.

![](https://i.imgur.com/4nAzJsr.png)

It has the same average score as Beagle14-7B ("Show merges"), which could be due to might be due to an unlucky run.
I think I might be overexploiting argilla/distilabel-intel-orca-dpo-pairs at this point, since this dataset or its original version are present in multiple models.
I need to find more high-quality preference data for the next DPO merge.

Note that some models like udkai/Turdus and nfaheem/Marcoroni-7b-DPO-Merge are unfortunately contaminated on purpose (see the very high Winogrande score).

### Nous

The evaluation was performed using [LLM AutoEval](https://github.com/mlabonne/llm-autoeval) on Nous suite. It is the best 7B model to date.

| Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
|---|---:|---:|---:|---:|---:|
| [**mlabonne/NeuralBeagle14-7B**](https://huggingface.co/mlabonne/NeuralBeagle14-7B) [πŸ“„](https://gist.github.com/mlabonne/ad0c665bbe581c8420136c3b52b3c15c) | **60.25** | **46.06** | **76.77** | **70.32** | **47.86** |
| [mlabonne/Beagle14-7B](https://huggingface.co/mlabonne/Beagle14-7B) [πŸ“„](https://gist.github.com/mlabonne/f5a5bf8c0827bbec2f05b97cc62d642c) | 59.4 | 44.38 | 76.53 | 69.44 | 47.25 |
| [mlabonne/NeuralDaredevil-7B](https://huggingface.co/mlabonne/NeuralDaredevil-7B) [πŸ“„](https://gist.github.com/mlabonne/cbeb077d1df71cb81c78f742f19f4155) | 59.39 | 45.23 | 76.2 | 67.61 | 48.52 |
| [argilla/distilabeled-Marcoro14-7B-slerp](https://huggingface.co/argilla/distilabeled-Marcoro14-7B-slerp) [πŸ“„](https://gist.github.com/mlabonne/9082c4e59f4d3f3543c5eda3f4807040) | 58.93 | 45.38 | 76.48 | 65.68 | 48.18 |
| [mlabonne/NeuralMarcoro14-7B](https://huggingface.co/mlabonne/NeuralMarcoro14-7B) [πŸ“„](https://gist.github.com/mlabonne/b31572a4711c945a4827e7242cfc4b9d) | 58.4 | 44.59 | 76.17 | 65.94 | 46.9 |
| [openchat/openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106) [πŸ“„](https://gist.github.com/mlabonne/1afab87b543b0717ec08722cf086dcc3) | 53.71 | 44.17 | 73.72 | 52.53 | 44.4 |
| [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) [πŸ“„](https://gist.github.com/mlabonne/88b21dd9698ffed75d6163ebdc2f6cc8) | 52.42 | 42.75 | 72.99 | 52.99 | 40.94 |

You can find the complete benchmark on [YALL - Yet Another LLM Leaderboard](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard).

## πŸ’» Usage

```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mlabonne/NeuralBeagle14-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```

<p align="center">
  <a href="https://github.com/argilla-io/distilabel">
    <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/>
  </a>
</p>