Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
pipeline_tag: text-generation
|
6 |
+
tags:
|
7 |
+
- AutoGPTQ
|
8 |
+
- 4bit
|
9 |
+
- GPTQ
|
10 |
+
---
|
11 |
+
|
12 |
+
Model created using [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) on a [GPT-2](https://huggingface.co/gpt2) model with 4-bit quantization.
|
13 |
+
|
14 |
+
You can load this model with the AutoGPTQ library, installed with the following command:
|
15 |
+
|
16 |
+
```
|
17 |
+
pip install auto-gptq
|
18 |
+
```
|
19 |
+
|
20 |
+
You can then download the model from the hub using the following code:
|
21 |
+
|
22 |
+
```python
|
23 |
+
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
24 |
+
from transformers import AutoTokenizer
|
25 |
+
|
26 |
+
model_id = "mlabonne/gpt2-GPTQ-4bit"
|
27 |
+
quantize_config = BaseQuantizeConfig(bits=4, group_size=128)
|
28 |
+
model = AutoGPTQForCausalLM.from_pretrained(model_id, quantize_config)
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
30 |
+
```
|
31 |
+
|
32 |
+
This model works with the traditional [Text Generation pipeline](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.TextGenerationPipeline).
|