Poro-34B-GPTQ-SGroup / config.json
mlconvexai's picture
Upload BloomForCausalLM
e555094 verified
raw
history blame
1.43 kB
{
"_name_or_path": "Poro-34B-185c",
"apply_residual_connection_post_layernorm": false,
"architectures": [
"BloomForCausalLM"
],
"attention_dropout": 0.0,
"attention_softmax_in_fp32": true,
"bos_token_id": 1,
"eos_token_id": 2,
"hidden_dropout": 0.0,
"hidden_size": 7168,
"initializer_range": 0.02,
"layer_norm_epsilon": 1e-05,
"masked_softmax_fusion": true,
"model_type": "bloom",
"n_head": 56,
"n_layer": 54,
"pad_token_id": 3,
"pretraining_tp": 1,
"quantization_config": {
"batch_size": 1,
"bits": 4,
"block_name_to_quantize": null,
"cache_block_outputs": true,
"damp_percent": 0.1,
"dataset": [
"Peruuta ensin vanhaan osoitteeseen tilattu uutiskirje kirjeen alareunan \u201cPeruuta tilaus\u201d -linkist\u00e4.\nTilaa uutiskirje uudelleen oikeaan osoitteeseen."
],
"desc_act": false,
"exllama_config": {
"version": 1
},
"group_size": 128,
"max_input_length": null,
"model_seqlen": null,
"module_name_preceding_first_block": null,
"modules_in_block_to_quantize": null,
"pad_token_id": null,
"quant_method": "gptq",
"sym": true,
"tokenizer": null,
"true_sequential": true,
"use_cuda_fp16": false,
"use_exllama": true
},
"sequence_length": 2048,
"slow_but_exact": false,
"torch_dtype": "float16",
"transformers_version": "4.38.2",
"use_cache": true,
"vocab_size": 128000
}