--- library_name: transformers license: gemma base_model: google/gemma-2-9b tags: - llama-factory - full - generated_from_trainer model-index: - name: hp_ablations_gemma_scheduler_cosine_warmup0.05_minlr5e-7 results: [] --- # hp_ablations_gemma_scheduler_cosine_warmup0.05_minlr5e-7 This model is a fine-tuned version of [google/gemma-2-9b](https://huggingface.co/google/gemma-2-9b) on the mlfoundations-dev/oh-dcft-v3.1-gpt-4o-mini dataset. It achieves the following results on the evaluation set: - Loss: 0.5908 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 16 - total_train_batch_size: 512 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine_with_min_lr - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.5939 | 0.9997 | 443 | 0.5920 | | 0.5415 | 1.9994 | 886 | 0.5836 | | 0.4941 | 2.9992 | 1329 | 0.5908 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.3.0 - Datasets 3.0.2 - Tokenizers 0.20.3