File size: 1,808 Bytes
7473aa0
 
 
 
 
 
b40c778
7473aa0
 
 
 
 
 
 
 
 
 
 
b40c778
7473aa0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
library_name: transformers
license: gemma
base_model: google/gemma-2-9b
tags:
- llama-factory
- full
- generated_from_trainer
model-index:
- name: hp_ablations_gemma_scheduler_cosine_warmup0.10_minlr1e-7
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hp_ablations_gemma_scheduler_cosine_warmup0.10_minlr1e-7

This model is a fine-tuned version of [google/gemma-2-9b](https://huggingface.co/google/gemma-2-9b) on the mlfoundations-dev/oh-dcft-v3.1-gpt-4o-mini dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5901

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 16
- total_train_batch_size: 512
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine_with_min_lr
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.5957        | 0.9997 | 443  | 0.5937          |
| 0.5451        | 1.9994 | 886  | 0.5835          |
| 0.4967        | 2.9992 | 1329 | 0.5901          |


### Framework versions

- Transformers 4.46.1
- Pytorch 2.3.0
- Datasets 3.0.2
- Tokenizers 0.20.3