import argparse import glob import numpy as np import librosa from essentia.standard import (NSGConstantQ, NSGIConstantQ) import hparams import utils def parse_files(path, source): if source == 'mixture': path = path + 'Mixtures/Dev/*/' + str(source) + '.wav' paths = sorted(glob.glob(path)) else: path = path + 'Sources/Dev/*/' + str(source) + '.wav' paths = sorted(glob.glob(path)) return paths def forward_transform(y, min_f, max_f, bpo, gamma): # Parameters params = { # Backward transform needs to know the signal size. 'inputSize': y.size, 'minFrequency': min_f, 'maxFrequency': max_f, 'binsPerOctave': bpo, # Minimum number of FFT bins per CQ channel. 'minimumWindow': 4, 'gamma': gamma } # Forward and backward transforms constantq, dcchannel, nfchannel = NSGConstantQ(**params)(y) return constantq, dcchannel, nfchannel def backward_transform(c, dc, nf, orig_size, min_f, max_f, bpo, gamma): # Parameters params = { # Backward transform needs to know the signal size. 'inputSize': orig_size, 'minFrequency': min_f, 'maxFrequency': max_f, 'binsPerOctave': bpo, # Minimum number of FFT bins per CQ channel. 'minimumWindow': 4, 'gamma': gamma } # Forward and backward transforms y = NSGIConstantQ(**params)(c, dc, nf) return y def make_chunks(c): cqt = np.abs(c).astype(np.float16) cqt = np.asfortranarray(cqt) padded_cqt = librosa.util.fix_length(cqt,hparams.chunk_size*np.ceil(cqt.shape[-1]/hparams.chunk_size).astype(int)) framed_cqt = librosa.util.frame(padded_cqt,hparams.chunk_size,hparams.chunk_size) samples = np.transpose(framed_cqt,(2,0,1)) cqt_input = np.expand_dims(samples,-1) return cqt_input if __name__ == '__main__': args = argparse.ArgumentParser() args.add_argument('Path',metavar='path',type=str,help='Path to DSD100') args.add_argument('Source',metavar='source',type=str,help='Desired source to preprocess for separation. Use mixture to preprocess the mixtures') args.add_argument('Output_path',metavar='output_path',type=str,help='Output path for the pikled spectrograms') args = args.parse_args() path = args.Path source = args.Source outpath = args.Output_path if path[-1] != '/': path = path + '/' if outpath[-1] != '/': outpath = outpath + '/' files = parse_files(path, source) mag_lf_array = [] mag_hf_array = [] for i in range(0,len(files)): print(files[i]) y, sr = librosa.load(files[i], hparams.sr, mono = True) C_lf,_,_ = forward_transform(y,hparams.lf_params['min_f'],hparams.lf_params['max_f'],hparams.lf_params['bins_per_octave'], hparams.lf_params['gamma']) C_hf,_,_ = forward_transform(y,hparams.hf_params['min_f'],hparams.hf_params['max_f'],hparams.hf_params['bins_per_octave'], hparams.hf_params['gamma']) c_lf = make_chunks(C_lf) c_hf = make_chunks(C_hf) mag_lf_array.append(c_lf) mag_hf_array.append(c_hf) if i == 1: break mag_lf = utils.list_to_array(mag_lf_array) mag_hf = utils.list_to_array(mag_hf_array) filename_lf = source + '_lf.npy' filename_hf = source + '_hf.npy' utils.pickle(mag_lf, outpath, filename_lf) utils.pickle(mag_hf, outpath, filename_hf)