File size: 1,573 Bytes
e738ad0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
license: apache-2.0
datasets:
- PrimeIntellect/fineweb-edu
- PrimeIntellect/fineweb
- PrimeIntellect/StackV1-popular
- mlfoundations/dclm-baseline-1.0-parquet
- open-web-math/open-web-math
- arcee-ai/EvolKit-75K
- arcee-ai/Llama-405B-Logits
- arcee-ai/The-Tomb
- mlabonne/open-perfectblend-fixed
- microsoft/orca-agentinstruct-1M-v1-cleaned
- Post-training-Data-Flywheel/AutoIF-instruct-61k-with-funcs
- Team-ACE/ToolACE
- Synthia-coder
- ServiceNow-AI/M2Lingual
- AI-MO/NuminaMath-TIR
- allenai/tulu-3-sft-personas-code
- allenai/tulu-3-sft-personas-math
- allenai/tulu-3-sft-personas-math-grade
- allenai/tulu-3-sft-personas-algebra
language:
- en
base_model: PrimeIntellect/INTELLECT-1-Instruct
pipeline_tag: text-generation
tags:
- mlx
---

# mlx-community/INTELLECT-1-Instruct-4bit

The Model [mlx-community/INTELLECT-1-Instruct-4bit](https://huggingface.co/mlx-community/INTELLECT-1-Instruct-4bit) was
converted to MLX format from [PrimeIntellect/INTELLECT-1-Instruct](https://huggingface.co/PrimeIntellect/INTELLECT-1-Instruct)
using mlx-lm version **0.20.1**.

## Use with mlx

```bash
pip install mlx-lm
```

```python
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/INTELLECT-1-Instruct-4bit")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
```