File size: 1,573 Bytes
e738ad0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
license: apache-2.0
datasets:
- PrimeIntellect/fineweb-edu
- PrimeIntellect/fineweb
- PrimeIntellect/StackV1-popular
- mlfoundations/dclm-baseline-1.0-parquet
- open-web-math/open-web-math
- arcee-ai/EvolKit-75K
- arcee-ai/Llama-405B-Logits
- arcee-ai/The-Tomb
- mlabonne/open-perfectblend-fixed
- microsoft/orca-agentinstruct-1M-v1-cleaned
- Post-training-Data-Flywheel/AutoIF-instruct-61k-with-funcs
- Team-ACE/ToolACE
- Synthia-coder
- ServiceNow-AI/M2Lingual
- AI-MO/NuminaMath-TIR
- allenai/tulu-3-sft-personas-code
- allenai/tulu-3-sft-personas-math
- allenai/tulu-3-sft-personas-math-grade
- allenai/tulu-3-sft-personas-algebra
language:
- en
base_model: PrimeIntellect/INTELLECT-1-Instruct
pipeline_tag: text-generation
tags:
- mlx
---
# mlx-community/INTELLECT-1-Instruct-4bit
The Model [mlx-community/INTELLECT-1-Instruct-4bit](https://huggingface.co/mlx-community/INTELLECT-1-Instruct-4bit) was
converted to MLX format from [PrimeIntellect/INTELLECT-1-Instruct](https://huggingface.co/PrimeIntellect/INTELLECT-1-Instruct)
using mlx-lm version **0.20.1**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/INTELLECT-1-Instruct-4bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|