MLX
English
llama
osanseviero commited on
Commit
2fa434c
·
1 Parent(s): babd285

Update model card (#2)

Browse files

- Update model card (7e47e3302efba5e5bfb5709eb38f1d883b44e664)

Files changed (1) hide show
  1. README.md +12 -36
README.md CHANGED
@@ -4,8 +4,10 @@ datasets:
4
  - cerebras/SlimPajama-627B
5
  - bigcode/starcoderdata
6
  - OpenAssistant/oasst_top1_2023-08-25
 
7
  language:
8
  - en
 
9
  ---
10
  <div align="center">
11
 
@@ -14,45 +16,19 @@ language:
14
 
15
  https://github.com/jzhang38/TinyLlama
16
 
17
- The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01.
18
 
19
 
20
- We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
21
 
22
- #### This Model
23
- This is the chat model finetuned on top of [TinyLlama/TinyLlama-1.1B-intermediate-step-955k-2T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-955k-token-2T). **We follow [HF's Zephyr](https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/edit/main/README.md)'s training recipe.** The model was " initially fine-tuned on a variant of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT.
24
- We then further aligned the model with [🤗 TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contain 64k prompts and model completions that are ranked by GPT-4."
 
 
25
 
 
26
 
27
- #### How to use
28
- You will need the transformers>=4.34
29
- Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information.
30
-
31
- ```python
32
- # Install transformers from source - only needed for versions <= v4.34
33
- # pip install git+https://github.com/huggingface/transformers.git
34
- # pip install accelerate
35
-
36
- import torch
37
- from transformers import pipeline
38
-
39
- pipe = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v0.6", torch_dtype=torch.bfloat16, device_map="auto")
40
-
41
- # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
42
- messages = [
43
- {
44
- "role": "system",
45
- "content": "You are a friendly chatbot who always responds in the style of a pirate",
46
- },
47
- {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
48
- ]
49
- prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
50
- outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
51
- print(outputs[0]["generated_text"])
52
- # <|system|>
53
- # You are a friendly chatbot who always responds in the style of a pirate.</s>
54
- # <|user|>
55
- # How many helicopters can a human eat in one sitting?</s>
56
- # <|assistant|>
57
- # ...
58
  ```
 
4
  - cerebras/SlimPajama-627B
5
  - bigcode/starcoderdata
6
  - OpenAssistant/oasst_top1_2023-08-25
7
+ base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-955k-token-2T
8
  language:
9
  - en
10
+ library_name: mlx
11
  ---
12
  <div align="center">
13
 
 
16
 
17
  https://github.com/jzhang38/TinyLlama
18
 
19
+ The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. This repository contains the TinyLlama-1.1B-Chat-v0.6 weights in npz format suitable for use with Apple's MLX framework. For more information about the model, please review [its model card](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.6)
20
 
21
 
22
+ #### How to use
23
 
24
+ ```
25
+ pip install mlx
26
+ pip install huggingface_hub
27
+ git clone https://github.com/ml-explore/mlx-examples.git
28
+ cd mlx-examples
29
 
30
+ huggingface-cli download --local-dir-use-symlinks False --local-dir tinyllama-1.1B-Chat-v0.6 mlx-community/tinyllama-1.1B-Chat-v0.6
31
 
32
+ # Run example
33
+ python llms/llama/llama.py --model_path tinyllama-1.1B-Chat-v0.6 --prompt "My name is"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  ```