--- base_model: google/gemma-2-2b-jpn-it language: - ja library_name: transformers license: gemma pipeline_tag: text-generation tags: - conversational - mlx extra_gated_heading: Access Gemma on Hugging Face extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging Face and click below. Requests are processed immediately. extra_gated_button_content: Acknowledge license --- # mlx-community/gemma-2-2b-jpn-it-8bit The Model [mlx-community/gemma-2-2b-jpn-it-8bit](https://huggingface.co/mlx-community/gemma-2-2b-jpn-it-8bit) was converted to MLX format from [google/gemma-2-2b-jpn-it](https://huggingface.co/google/gemma-2-2b-jpn-it) using mlx-lm version **0.19.0**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/gemma-2-2b-jpn-it-8bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```