File size: 1,115 Bytes
8ca7a09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
---
base_model: nvidia/Llama-3.1-Nemotron-70B-Reward-HF
datasets:
- nvidia/HelpSteer2
language:
- en
license: llama3.1
tags:
- nvidia
- llama3.1
- reward model
- mlx
inference: false
fine-tuning: false
---
# mlx-community/nvidia-Llama-3.1-Nemotron-70B-Reward-HF-AQ41
The Model [mlx-community/nvidia-Llama-3.1-Nemotron-70B-Reward-HF-AQ41](https://huggingface.co/mlx-community/nvidia-Llama-3.1-Nemotron-70B-Reward-HF-AQ41) was converted to MLX format from [nvidia/Llama-3.1-Nemotron-70B-Reward-HF](https://huggingface.co/nvidia/Llama-3.1-Nemotron-70B-Reward-HF) using mlx-lm version **0.18.2**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/nvidia-Llama-3.1-Nemotron-70B-Reward-HF-AQ41")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|