File size: 1,218 Bytes
f9717b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
---
base_model: Salesforce/xLAM-7b-fc-r
datasets:
- Salesforce/xlam-function-calling-60k
language:
- en
license: cc-by-nc-4.0
pipeline_tag: text-generation
tags:
- function-calling
- LLM Agent
- tool-use
- deepseek
- pytorch
- mlx
extra_gated_heading: Acknowledge to follow corresponding license to access the repository
extra_gated_button_content: Agree and access repository
extra_gated_fields:
First Name: text
Last Name: text
Country: country
Affiliation: text
---
# andstor/xLAM-7b-fc-r-mlx
The Model [andstor/xLAM-7b-fc-r-mlx](https://huggingface.co/andstor/xLAM-7b-fc-r-mlx) was converted to MLX format from [Salesforce/xLAM-7b-fc-r](https://huggingface.co/Salesforce/xLAM-7b-fc-r) using mlx-lm version **0.19.1**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("andstor/xLAM-7b-fc-r-mlx")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|