--- base_model: Salesforce/xLAM-7b-fc-r datasets: - Salesforce/xlam-function-calling-60k language: - en license: cc-by-nc-4.0 pipeline_tag: text-generation tags: - function-calling - LLM Agent - tool-use - deepseek - pytorch - mlx extra_gated_heading: Acknowledge to follow corresponding license to access the repository extra_gated_button_content: Agree and access repository extra_gated_fields: First Name: text Last Name: text Country: country Affiliation: text --- # andstor/xLAM-7b-fc-r-mlx The Model [andstor/xLAM-7b-fc-r-mlx](https://huggingface.co/andstor/xLAM-7b-fc-r-mlx) was converted to MLX format from [Salesforce/xLAM-7b-fc-r](https://huggingface.co/Salesforce/xLAM-7b-fc-r) using mlx-lm version **0.19.1**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("andstor/xLAM-7b-fc-r-mlx") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```