--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilrubert-tiny-cased-conversational-v1_best_finetuned_emotion_experiment_augmented_anger_fear results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilrubert-tiny-cased-conversational-v1_best_finetuned_emotion_experiment_augmented_anger_fear This model is a fine-tuned version of [DeepPavlov/distilrubert-tiny-cased-conversational-v1](https://huggingface.co/DeepPavlov/distilrubert-tiny-cased-conversational-v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5751 - Accuracy: 0.8716 - F1: 0.8713 - Precision: 0.8721 - Recall: 0.8716 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.8851 | 1.0 | 69 | 0.4740 | 0.8361 | 0.8346 | 0.8364 | 0.8361 | | 0.4404 | 2.0 | 138 | 0.4018 | 0.8643 | 0.8625 | 0.8672 | 0.8643 | | 0.305 | 3.0 | 207 | 0.3754 | 0.8800 | 0.8795 | 0.8794 | 0.8800 | | 0.2441 | 4.0 | 276 | 0.3942 | 0.8758 | 0.8748 | 0.8752 | 0.8758 | | 0.1837 | 5.0 | 345 | 0.4005 | 0.8873 | 0.8870 | 0.8877 | 0.8873 | | 0.1573 | 6.0 | 414 | 0.4468 | 0.8716 | 0.8718 | 0.8730 | 0.8716 | | 0.1292 | 7.0 | 483 | 0.4582 | 0.8747 | 0.8750 | 0.8758 | 0.8747 | | 0.0949 | 8.0 | 552 | 0.5110 | 0.8601 | 0.8601 | 0.8628 | 0.8601 | | 0.0729 | 9.0 | 621 | 0.5415 | 0.8674 | 0.8674 | 0.8681 | 0.8674 | | 0.058 | 10.0 | 690 | 0.5751 | 0.8716 | 0.8713 | 0.8721 | 0.8716 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1