update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
- f1
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
model-index:
|
10 |
+
- name: distilrubert_tiny-2nd-finetune-epru
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# distilrubert_tiny-2nd-finetune-epru
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [mmillet/distilrubert-tiny-cased-conversational-v1_single_finetuned_on_cedr_augmented](https://huggingface.co/mmillet/distilrubert-tiny-cased-conversational-v1_single_finetuned_on_cedr_augmented) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.4467
|
22 |
+
- Accuracy: 0.8712
|
23 |
+
- F1: 0.8718
|
24 |
+
- Precision: 0.8867
|
25 |
+
- Recall: 0.8712
|
26 |
+
|
27 |
+
## Model description
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Intended uses & limitations
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training and evaluation data
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training procedure
|
40 |
+
|
41 |
+
### Training hyperparameters
|
42 |
+
|
43 |
+
The following hyperparameters were used during training:
|
44 |
+
- learning_rate: 0.0001
|
45 |
+
- train_batch_size: 64
|
46 |
+
- eval_batch_size: 64
|
47 |
+
- seed: 42
|
48 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- num_epochs: 20
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
56 |
+
| 0.4947 | 1.0 | 12 | 0.4142 | 0.8773 | 0.8777 | 0.8907 | 0.8773 |
|
57 |
+
| 0.2614 | 2.0 | 24 | 0.3178 | 0.9018 | 0.9011 | 0.9069 | 0.9018 |
|
58 |
+
| 0.2079 | 3.0 | 36 | 0.3234 | 0.8773 | 0.8784 | 0.8850 | 0.8773 |
|
59 |
+
| 0.1545 | 4.0 | 48 | 0.3729 | 0.8834 | 0.8830 | 0.8946 | 0.8834 |
|
60 |
+
| 0.1028 | 5.0 | 60 | 0.2964 | 0.9018 | 0.9016 | 0.9073 | 0.9018 |
|
61 |
+
| 0.0986 | 6.0 | 72 | 0.2971 | 0.9141 | 0.9139 | 0.9152 | 0.9141 |
|
62 |
+
| 0.0561 | 7.0 | 84 | 0.3482 | 0.8957 | 0.8962 | 0.9023 | 0.8957 |
|
63 |
+
| 0.0336 | 8.0 | 96 | 0.3731 | 0.8957 | 0.8953 | 0.9014 | 0.8957 |
|
64 |
+
| 0.0364 | 9.0 | 108 | 0.4467 | 0.8712 | 0.8718 | 0.8867 | 0.8712 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.20.0
|
70 |
+
- Pytorch 1.11.0+cu113
|
71 |
+
- Datasets 2.3.2
|
72 |
+
- Tokenizers 0.12.1
|