--- tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilrubert_tiny-2nd-finetune-epru results: [] --- # distilrubert_tiny-2nd-finetune-epru This model is a fine-tuned version of [mmillet/distilrubert-tiny-cased-conversational-v1_single_finetuned_on_cedr_augmented](https://huggingface.co/mmillet/distilrubert-tiny-cased-conversational-v1_single_finetuned_on_cedr_augmented) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4467 - Accuracy: 0.8712 - F1: 0.8718 - Precision: 0.8867 - Recall: 0.8712 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.4947 | 1.0 | 12 | 0.4142 | 0.8773 | 0.8777 | 0.8907 | 0.8773 | | 0.2614 | 2.0 | 24 | 0.3178 | 0.9018 | 0.9011 | 0.9069 | 0.9018 | | 0.2079 | 3.0 | 36 | 0.3234 | 0.8773 | 0.8784 | 0.8850 | 0.8773 | | 0.1545 | 4.0 | 48 | 0.3729 | 0.8834 | 0.8830 | 0.8946 | 0.8834 | | 0.1028 | 5.0 | 60 | 0.2964 | 0.9018 | 0.9016 | 0.9073 | 0.9018 | | 0.0986 | 6.0 | 72 | 0.2971 | 0.9141 | 0.9139 | 0.9152 | 0.9141 | | 0.0561 | 7.0 | 84 | 0.3482 | 0.8957 | 0.8962 | 0.9023 | 0.8957 | | 0.0336 | 8.0 | 96 | 0.3731 | 0.8957 | 0.8953 | 0.9014 | 0.8957 | | 0.0364 | 9.0 | 108 | 0.4467 | 0.8712 | 0.8718 | 0.8867 | 0.8712 | ### Framework versions - Transformers 4.20.0 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1