File size: 2,345 Bytes
27d512c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
091059e
27d512c
 
 
 
 
 
 
 
 
091059e
 
27d512c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
091059e
 
 
 
 
 
 
 
27d512c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
language:
- sw
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_15_0
metrics:
- wer
model-index:
- name: Incremental Swahili Luganda
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Mix data
      type: mozilla-foundation/common_voice_15_0
      config: lg
      split: validation
      args: 'config: lu, split: test'
    metrics:
    - name: Wer
      type: wer
      value: 30.757934327853608
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Incremental Swahili Luganda

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Mix data dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3450
- Wer: 30.7579

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.1454        | 0.1129 | 500  | 0.3666          | 32.6860 |
| 0.1537        | 0.2258 | 1000 | 0.3721          | 32.9290 |
| 0.1471        | 0.3388 | 1500 | 0.3665          | 32.9660 |
| 0.1397        | 0.4517 | 2000 | 0.3626          | 32.0067 |
| 0.1501        | 0.5646 | 2500 | 0.3562          | 32.2413 |
| 0.1381        | 0.6775 | 3000 | 0.3510          | 30.8636 |
| 0.14          | 0.7904 | 3500 | 0.3476          | 30.9122 |
| 0.135         | 0.9033 | 4000 | 0.3450          | 30.7579 |


### Framework versions

- Transformers 4.40.0
- Pytorch 2.2.2+cu118
- Datasets 2.19.0
- Tokenizers 0.19.1