File size: 3,308 Bytes
fe1475c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5872d2
 
 
 
 
fe1475c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5872d2
 
fe1475c
 
 
c5872d2
fe1475c
 
 
 
 
c5872d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe1475c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
license: mit
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: roberta-finetuned-WebClassification-v2-smalllinguaMultiv2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# roberta-finetuned-WebClassification-v2-smalllinguaMultiv2

This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8644
- Accuracy: 0.8387
- F1: 0.8387
- Precision: 0.8387
- Recall: 0.8387

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| No log        | 1.0   | 95   | 2.3654          | 0.4409   | 0.4409 | 0.4409    | 0.4409 |
| No log        | 2.0   | 190  | 1.8455          | 0.5269   | 0.5269 | 0.5269    | 0.5269 |
| No log        | 3.0   | 285  | 1.4468          | 0.6344   | 0.6344 | 0.6344    | 0.6344 |
| No log        | 4.0   | 380  | 1.1099          | 0.7419   | 0.7419 | 0.7419    | 0.7419 |
| No log        | 5.0   | 475  | 1.0515          | 0.7634   | 0.7634 | 0.7634    | 0.7634 |
| 1.6355        | 6.0   | 570  | 0.9938          | 0.7312   | 0.7312 | 0.7312    | 0.7312 |
| 1.6355        | 7.0   | 665  | 0.8275          | 0.7957   | 0.7957 | 0.7957    | 0.7957 |
| 1.6355        | 8.0   | 760  | 0.8344          | 0.7957   | 0.7957 | 0.7957    | 0.7957 |
| 1.6355        | 9.0   | 855  | 0.8516          | 0.8065   | 0.8065 | 0.8065    | 0.8065 |
| 1.6355        | 10.0  | 950  | 0.8723          | 0.7957   | 0.7957 | 0.7957    | 0.7957 |
| 0.2827        | 11.0  | 1045 | 0.8644          | 0.8387   | 0.8387 | 0.8387    | 0.8387 |
| 0.2827        | 12.0  | 1140 | 0.9343          | 0.8065   | 0.8065 | 0.8065    | 0.8065 |
| 0.2827        | 13.0  | 1235 | 1.0181          | 0.7957   | 0.7957 | 0.7957    | 0.7957 |
| 0.2827        | 14.0  | 1330 | 1.0068          | 0.7957   | 0.7957 | 0.7957    | 0.7957 |
| 0.2827        | 15.0  | 1425 | 1.0085          | 0.8065   | 0.8065 | 0.8065    | 0.8065 |
| 0.0485        | 16.0  | 1520 | 1.0257          | 0.8280   | 0.8280 | 0.8280    | 0.8280 |
| 0.0485        | 17.0  | 1615 | 1.0305          | 0.8172   | 0.8172 | 0.8172    | 0.8172 |
| 0.0485        | 18.0  | 1710 | 1.0648          | 0.7957   | 0.7957 | 0.7957    | 0.7957 |
| 0.0485        | 19.0  | 1805 | 1.0677          | 0.7957   | 0.7957 | 0.7957    | 0.7957 |
| 0.0485        | 20.0  | 1900 | 1.0687          | 0.7957   | 0.7957 | 0.7957    | 0.7957 |


### Framework versions

- Transformers 4.31.0.dev0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3