--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: roberta-finetuned-WebClassification-v2-smalllinguaMultiv2 results: [] --- # roberta-finetuned-WebClassification-v2-smalllinguaMultiv2 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8644 - Accuracy: 0.8387 - F1: 0.8387 - Precision: 0.8387 - Recall: 0.8387 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 95 | 2.3654 | 0.4409 | 0.4409 | 0.4409 | 0.4409 | | No log | 2.0 | 190 | 1.8455 | 0.5269 | 0.5269 | 0.5269 | 0.5269 | | No log | 3.0 | 285 | 1.4468 | 0.6344 | 0.6344 | 0.6344 | 0.6344 | | No log | 4.0 | 380 | 1.1099 | 0.7419 | 0.7419 | 0.7419 | 0.7419 | | No log | 5.0 | 475 | 1.0515 | 0.7634 | 0.7634 | 0.7634 | 0.7634 | | 1.6355 | 6.0 | 570 | 0.9938 | 0.7312 | 0.7312 | 0.7312 | 0.7312 | | 1.6355 | 7.0 | 665 | 0.8275 | 0.7957 | 0.7957 | 0.7957 | 0.7957 | | 1.6355 | 8.0 | 760 | 0.8344 | 0.7957 | 0.7957 | 0.7957 | 0.7957 | | 1.6355 | 9.0 | 855 | 0.8516 | 0.8065 | 0.8065 | 0.8065 | 0.8065 | | 1.6355 | 10.0 | 950 | 0.8723 | 0.7957 | 0.7957 | 0.7957 | 0.7957 | | 0.2827 | 11.0 | 1045 | 0.8644 | 0.8387 | 0.8387 | 0.8387 | 0.8387 | | 0.2827 | 12.0 | 1140 | 0.9343 | 0.8065 | 0.8065 | 0.8065 | 0.8065 | | 0.2827 | 13.0 | 1235 | 1.0181 | 0.7957 | 0.7957 | 0.7957 | 0.7957 | | 0.2827 | 14.0 | 1330 | 1.0068 | 0.7957 | 0.7957 | 0.7957 | 0.7957 | | 0.2827 | 15.0 | 1425 | 1.0085 | 0.8065 | 0.8065 | 0.8065 | 0.8065 | | 0.0485 | 16.0 | 1520 | 1.0257 | 0.8280 | 0.8280 | 0.8280 | 0.8280 | | 0.0485 | 17.0 | 1615 | 1.0305 | 0.8172 | 0.8172 | 0.8172 | 0.8172 | | 0.0485 | 18.0 | 1710 | 1.0648 | 0.7957 | 0.7957 | 0.7957 | 0.7957 | | 0.0485 | 19.0 | 1805 | 1.0677 | 0.7957 | 0.7957 | 0.7957 | 0.7957 | | 0.0485 | 20.0 | 1900 | 1.0687 | 0.7957 | 0.7957 | 0.7957 | 0.7957 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3