Update README.md
Browse files
README.md
CHANGED
@@ -60,4 +60,33 @@ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
|
60 |
Please note, building a car requires significant expertise, resources, and adherence to strict safety and regulatory standards. It is not a project that can be undertaken without extensive knowledge and experience in automotive engineering, manufacturing, and business management.
|
61 |
|
62 |
----------------------------------------------------------------------------------------------------------------------------------
|
63 |
-
</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
Please note, building a car requires significant expertise, resources, and adherence to strict safety and regulatory standards. It is not a project that can be undertaken without extensive knowledge and experience in automotive engineering, manufacturing, and business management.
|
61 |
|
62 |
----------------------------------------------------------------------------------------------------------------------------------
|
63 |
+
</p>
|
64 |
+
|
65 |
+
### Quantization
|
66 |
+
You can reproduce the model using the following quant configs:
|
67 |
+
|
68 |
+
``` Python
|
69 |
+
from hqq.engine.hf import HQQModelForCausalLM, AutoTokenizer
|
70 |
+
model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
71 |
+
model = HQQModelForCausalLM.from_pretrained(model_id, use_auth_token=hf_auth, cache_dir=cache_path)
|
72 |
+
|
73 |
+
#Quantize params
|
74 |
+
from hqq.core.quantize import *
|
75 |
+
attn_prams = BaseQuantizeConfig(nbits=4, group_size=64, quant_zero=True, quant_scale=True)
|
76 |
+
attn_prams['scale_quant_params']['group_size'] = 256
|
77 |
+
experts_params = BaseQuantizeConfig(nbits=2, group_size=16, quant_zero=True, quant_scale=True)
|
78 |
+
|
79 |
+
quant_config = {}
|
80 |
+
#Attention
|
81 |
+
quant_config['self_attn.q_proj'] = attn_prams
|
82 |
+
quant_config['self_attn.k_proj'] = attn_prams
|
83 |
+
quant_config['self_attn.v_proj'] = attn_prams
|
84 |
+
quant_config['self_attn.o_proj'] = attn_prams
|
85 |
+
#Experts
|
86 |
+
quant_config['block_sparse_moe.experts.w1'] = experts_params
|
87 |
+
quant_config['block_sparse_moe.experts.w2'] = experts_params
|
88 |
+
quant_config['block_sparse_moe.experts.w3'] = experts_params
|
89 |
+
|
90 |
+
#Quantize
|
91 |
+
model.quantize_model(quant_config=quant_config)
|
92 |
+
```
|