initial version
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 229.94 +/- 14.33
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3a1f40aef0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3a1f40af80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3a1f414050>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3a1f4140e0>", "_build": "<function ActorCriticPolicy._build at 0x7f3a1f414170>", "forward": "<function ActorCriticPolicy.forward at 0x7f3a1f414200>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3a1f414290>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3a1f414320>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3a1f4143b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3a1f414440>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3a1f4144d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3a1f3d5c30>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651777769.9376297, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHMD4T1cw2O6fMSjupRWKDgagAC6SEE+OQAAgD8AAIA/muOZvFzfdjk1OMg4b+UetoBhk7uWjvO3AACAPwAAgD8m+I69ewSEuvPagbofq961A3wKuxBflDkAAIA/AACAPxrxFL1rjsk+JlCBPYrhf77mIyc9PqYUvQAAAAAAAAAA2ku7vezRlzhP7ou7hNsmuTaCdjvWUxs5AACAPwAAgD96IR4+/P+rPu04Wzxe+Tq++DU4PU5oRDwAAAAAAAAAAMZoqz7jm60+IM9Nvu3ONb64YbW7qdi5vAAAAAAAAAAAEKC3PqPGZj+GgGg+7WODvqHsDD6NYoq9AAAAAAAAAADN/sA8WmgUP8bAeT2q5UC+NLYmOyqWorwAAAAAAAAAANpdp732hDC6JSyAumKmZ7Wqjyq6kiWTOQAAgD8AAIA/JvvmvY/SB7p635S7Mr8dt8VwKDt7/K06AACAPwAAAAANpMO94brVuIUJLrqaHoq1eeuju3ruTTkAAIA/AACAPzMryjxFa8Y8BoO3vB6uAr6exIU8msYNPQAAAAAAAAAATSolPcPRM7qtl+26YTuMNGN7nLqd6OGzAACAPwAAgD8Ae/c9KegluhcGgTYfoGo2WKTeOrnVvLUAAIA/AACAP6YaND62VQC8PpwTO2kYqbg2q0S97YssugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwVd06zWyXECUhpRSlIwBbJRN6AOMAXSUR0CSE3mlqJuVdX2UKGgGaAloD0MIHlIMkGhUX0CUhpRSlGgVTegDaBZHQJIXTd/J/5N1fZQoaAZoCWgPQwiFzJVBNfBjQJSGlFKUaBVN6ANoFkdAkh4v4Irvs3V9lChoBmgJaA9DCGmqJ/MPdGFAlIaUUpRoFU3oA2gWR0CSIrJlar3kdX2UKGgGaAloD0MIG9mVlpHhWkCUhpRSlGgVTegDaBZHQJIl+nXNC7d1fZQoaAZoCWgPQwjC9/4G7Uk1QJSGlFKUaBVNSQFoFkdAkjljbeuV5nV9lChoBmgJaA9DCJrrNNJSC15AlIaUUpRoFU3oA2gWR0CSPda/h2nsdX2UKGgGaAloD0MIN4qsNZQGY0CUhpRSlGgVTegDaBZHQJJAEiD/VAl1fZQoaAZoCWgPQwhwJTs2ArdtQJSGlFKUaBVNrwFoFkdAkkDAt8NQTHV9lChoBmgJaA9DCNBFQ8ajNlhAlIaUUpRoFU3oA2gWR0CSQNdKNAC5dX2UKGgGaAloD0MIi21S0VidYUCUhpRSlGgVTegDaBZHQJJBkYMvysl1fZQoaAZoCWgPQwhvLZPheKhbQJSGlFKUaBVN6ANoFkdAkkPc5Ke05XV9lChoBmgJaA9DCFvri4S2511AlIaUUpRoFU3oA2gWR0CSRYd+G47SdX2UKGgGaAloD0MIVHO5wVBpQMCUhpRSlGgVTT4BaBZHQJJG6yQgcLl1fZQoaAZoCWgPQwjj/46o0IxgQJSGlFKUaBVN6ANoFkdAkkwoqTbFj3V9lChoBmgJaA9DCHi0ccTaomFAlIaUUpRoFU3oA2gWR0CSVvBV+7UYdX2UKGgGaAloD0MI22lrRDAhX0CUhpRSlGgVTegDaBZHQJJXQxUNrj51fZQoaAZoCWgPQwjqBgq8kwNcQJSGlFKUaBVN6ANoFkdAkluybhFVk3V9lChoBmgJaA9DCCwpd5/jozrAlIaUUpRoFU0nAWgWR0CSXxO4XoC/dX2UKGgGaAloD0MI2V2gpEBOYUCUhpRSlGgVTegDaBZHQJJiMLv1DjR1fZQoaAZoCWgPQwi6TE2CN0w1wJSGlFKUaBVNMgFoFkdAknlqiTMaCXV9lChoBmgJaA9DCKEt51JcE2pAlIaUUpRoFU1mAmgWR0CSei6CUX54dX2UKGgGaAloD0MIRN5y9WNVW0CUhpRSlGgVTegDaBZHQJJ/OKQ7tAt1fZQoaAZoCWgPQwiEDyVa8n5SQJSGlFKUaBVN6ANoFkdAkoS7ah6By3V9lChoBmgJaA9DCI8aE2KuLmhAlIaUUpRoFU2EAmgWR0CSidWnCO3ldX2UKGgGaAloD0MI3qtWJvyLXkCUhpRSlGgVTegDaBZHQJKZcbyYoiN1fZQoaAZoCWgPQwhEUgslE6hgQJSGlFKUaBVN6ANoFkdAkp3zSPU8WHV9lChoBmgJaA9DCANC6+HLCVNAlIaUUpRoFU3oA2gWR0CSoOONHYpVdX2UKGgGaAloD0MI7rH0oQv2W0CUhpRSlGgVTegDaBZHQJKhp/5Lytp1fZQoaAZoCWgPQwizCpsBLpRfQJSGlFKUaBVN6ANoFkdAkqHAID5j6XV9lChoBmgJaA9DCBsuck/X/WBAlIaUUpRoFU3oA2gWR0CSpl7IDHOsdX2UKGgGaAloD0MI1ejVAKWEVUCUhpRSlGgVTegDaBZHQJNO5SIgvDh1fZQoaAZoCWgPQwjcR25NuidZQJSGlFKUaBVN6ANoFkdAk1xj7655JXV9lChoBmgJaA9DCEhwI2WLQ2JAlIaUUpRoFU3oA2gWR0CTXNNGmUGFdX2UKGgGaAloD0MItCH/zCBOU0CUhpRSlGgVTegDaBZHQJNlvYXfqHJ1fZQoaAZoCWgPQwieeTnsvptfQJSGlFKUaBVN6ANoFkdAk2ketbLU1HV9lChoBmgJaA9DCPyrx30rFmZAlIaUUpRoFU0kAmgWR0CTd9IQOFxodX2UKGgGaAloD0MI0jk/xfH5YECUhpRSlGgVTegDaBZHQJN+rBzmwJR1fZQoaAZoCWgPQwjS/3It2gpgQJSGlFKUaBVN6ANoFkdAk392LpA2RHV9lChoBmgJaA9DCABV3LjFYGxAlIaUUpRoFU2nAWgWR0CTg/2t+1BudX2UKGgGaAloD0MIrweT4uPXXkCUhpRSlGgVTegDaBZHQJOEqWw/xDt1fZQoaAZoCWgPQwi3Xz5ZMYReQJSGlFKUaBVN6ANoFkdAk4jdYr8R+XV9lChoBmgJaA9DCLk4KjdRtl9AlIaUUpRoFU3oA2gWR0CTjjH/tICmdX2UKGgGaAloD0MIQgkzbf9XXkCUhpRSlGgVTegDaBZHQJOcrujRD1J1fZQoaAZoCWgPQwj7rgj+N/FjQJSGlFKUaBVN6ANoFkdAk6Ay0a6z3XV9lChoBmgJaA9DCPGCiNS0sFlAlIaUUpRoFU3oA2gWR0CToj9GZuyedX2UKGgGaAloD0MINs07TtEoXECUhpRSlGgVTegDaBZHQJOjCji4rjJ1fZQoaAZoCWgPQwiM2CeAYphfQJSGlFKUaBVN6ANoFkdAk6YYyTINmXV9lChoBmgJaA9DCCxJnuv7P1xAlIaUUpRoFU3oA2gWR0CTqS0vGp++dX2UKGgGaAloD0MIaCRCI9j6WECUhpRSlGgVTegDaBZHQJO3sBltj1B1fZQoaAZoCWgPQwjhlSTPdXBkQJSGlFKUaBVNlwNoFkdAk7lvgeii7HV9lChoBmgJaA9DCFTDfk+smztAlIaUUpRoFU08AWgWR0CTuuq0dBBzdX2UKGgGaAloD0MIOgK4WbwsXECUhpRSlGgVTegDaBZHQJPD9qKxcFB1fZQoaAZoCWgPQwgPRBZpYrFrQJSGlFKUaBVN+gFoFkdAk9JKZ6Uqx3V9lChoBmgJaA9DCFq77UJznl9AlIaUUpRoFU3oA2gWR0CT0sP3BYV7dX2UKGgGaAloD0MIOwFNhA3gX0CUhpRSlGgVTegDaBZHQJPZQdQwbl11fZQoaAZoCWgPQwgf9GxWfRVdQJSGlFKUaBVN6ANoFkdAk9oBPj4pMHV9lChoBmgJaA9DCNy7Bn3pFlxAlIaUUpRoFU3oA2gWR0CT3jB6KLsKdX2UKGgGaAloD0MIs3vysFAgW0CUhpRSlGgVTegDaBZHQJPex35eqrB1fZQoaAZoCWgPQwgtsMdESnJUQJSGlFKUaBVN6ANoFkdAk+Jer+5vtXV9lChoBmgJaA9DCFPOF3svaV5AlIaUUpRoFU3oA2gWR0CT5uMJx//edX2UKGgGaAloD0MI9fV8zXKOWUCUhpRSlGgVTegDaBZHQJPz7N/vv0B1fZQoaAZoCWgPQwhgcw6eCTRYQJSGlFKUaBVN6ANoFkdAk/lRt52Qn3V9lChoBmgJaA9DCOi8xi5RCltAlIaUUpRoFU3oA2gWR0CT+gux8lXzdX2UKGgGaAloD0MIf03WqIdpX0CUhpRSlGgVTegDaBZHQJQAvBhx5s11fZQoaAZoCWgPQwjVJk7ud1ZqQJSGlFKUaBVNdwFoFkdAlKUsmOU+tHV9lChoBmgJaA9DCFiP+1brKWNAlIaUUpRoFU3oA2gWR0CUrdwbVBlddX2UKGgGaAloD0MItOcyNYnoYUCUhpRSlGgVTegDaBZHQJSvqUu+RHR1fZQoaAZoCWgPQwiUTE7tDEdiQJSGlFKUaBVN6ANoFkdAlLEsDB/I83V9lChoBmgJaA9DCPW9huA4QGBAlIaUUpRoFU3oA2gWR0CUukBF/hESdX2UKGgGaAloD0MIQl2kUJZaYECUhpRSlGgVTegDaBZHQJTJUa0hNdt1fZQoaAZoCWgPQwhO8E3TZ5pZQJSGlFKUaBVN6ANoFkdAlMnbDqGDc3V9lChoBmgJaA9DCINsWb6ukWpAlIaUUpRoFU1JAWgWR0CUzPyYG+sYdX2UKGgGaAloD0MISWWKOQiiYkCUhpRSlGgVTegDaBZHQJTQbiQ1aW51fZQoaAZoCWgPQwg6z9iX7LxiQJSGlFKUaBVN6ANoFkdAlNEmUfPom3V9lChoBmgJaA9DCITYmULnzFxAlIaUUpRoFU3oA2gWR0CU1RX+l0o0dX2UKGgGaAloD0MIahZod0iSYECUhpRSlGgVTegDaBZHQJTVst7KJVN1fZQoaAZoCWgPQwhq9kArMDFYQJSGlFKUaBVN6ANoFkdAlNlUyYXwb3V9lChoBmgJaA9DCHnKarqe9EdAlIaUUpRoFU0aAWgWR0CU5LXNke6qdX2UKGgGaAloD0MIFi8WhsgAVkCUhpRSlGgVTegDaBZHQJTrliuuA7R1fZQoaAZoCWgPQwhS0y6mmapcQJSGlFKUaBVN6ANoFkdAlPC7PdEb53V9lChoBmgJaA9DCIo+H2VE3GJAlIaUUpRoFU3oA2gWR0CU8Xi9Zid8dX2UKGgGaAloD0MILXsS2JyqYUCUhpRSlGgVTegDaBZHQJT4KFpPAO91fZQoaAZoCWgPQwjeWibD8edZQJSGlFKUaBVN6ANoFkdAlP8d87ZFonV9lChoBmgJaA9DCMaGbvYHJl9AlIaUUpRoFU3oA2gWR0CVCRgJkXk6dX2UKGgGaAloD0MIPdS2YRQmW0CUhpRSlGgVTegDaBZHQJUKobkwN9Z1fZQoaAZoCWgPQwinIarw57xiQJSGlFKUaBVN6ANoFkdAlRQSro4dZXV9lChoBmgJaA9DCIGVQ4ts611AlIaUUpRoFU3oA2gWR0CVI1SGahHtdX2UKGgGaAloD0MIkSv1LAgKYUCUhpRSlGgVTegDaBZHQJUj0hxHXmN1fZQoaAZoCWgPQwg6WtWSDs5hQJSGlFKUaBVN6ANoFkdAlSpWza9K3HV9lChoBmgJaA9DCKoNTkQ/oGFAlIaUUpRoFU3oA2gWR0CVKx+jua4MdX2UKGgGaAloD0MISih9IeStXkCUhpRSlGgVTegDaBZHQJUvW1y/9Hd1fZQoaAZoCWgPQwjjxi3m5+RiQJSGlFKUaBVN6ANoFkdAlS/2Xw9aEHV9lChoBmgJaA9DCO2fpwGDHVlAlIaUUpRoFU3oA2gWR0CVM9OCoS+QdX2UKGgGaAloD0MIb/HwngPKX0CUhpRSlGgVTegDaBZHQJU/umxdIG11fZQoaAZoCWgPQwgsSZ7re/JgQJSGlFKUaBVN6ANoFkdAlUYwHRkVe3V9lChoBmgJaA9DCFddh2rKemxAlIaUUpRoFU2RAWgWR0CVRzp2U0N0dX2UKGgGaAloD0MIFvn1Q2yxXkCUhpRSlGgVTegDaBZHQJVK+AkLQX11fZQoaAZoCWgPQwjfp6rQQN9aQJSGlFKUaBVN6ANoFkdAlUudK/VRUHV9lChoBmgJaA9DCCy8y0V86VpAlIaUUpRoFU3oA2gWR0CVUY9wWFewdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 160, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3958350a84daddf57a708602e4fde1c15b3699c112727cb6e9159cc8d525694f
|
3 |
+
size 144110
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3a1f40aef0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3a1f40af80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3a1f414050>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3a1f4140e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3a1f414170>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3a1f414200>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3a1f414290>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3a1f414320>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3a1f4143b0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3a1f414440>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3a1f4144d0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f3a1f3d5c30>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 524288,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651777769.9376297,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAHMD4T1cw2O6fMSjupRWKDgagAC6SEE+OQAAgD8AAIA/muOZvFzfdjk1OMg4b+UetoBhk7uWjvO3AACAPwAAgD8m+I69ewSEuvPagbofq961A3wKuxBflDkAAIA/AACAPxrxFL1rjsk+JlCBPYrhf77mIyc9PqYUvQAAAAAAAAAA2ku7vezRlzhP7ou7hNsmuTaCdjvWUxs5AACAPwAAgD96IR4+/P+rPu04Wzxe+Tq++DU4PU5oRDwAAAAAAAAAAMZoqz7jm60+IM9Nvu3ONb64YbW7qdi5vAAAAAAAAAAAEKC3PqPGZj+GgGg+7WODvqHsDD6NYoq9AAAAAAAAAADN/sA8WmgUP8bAeT2q5UC+NLYmOyqWorwAAAAAAAAAANpdp732hDC6JSyAumKmZ7Wqjyq6kiWTOQAAgD8AAIA/JvvmvY/SB7p635S7Mr8dt8VwKDt7/K06AACAPwAAAAANpMO94brVuIUJLrqaHoq1eeuju3ruTTkAAIA/AACAPzMryjxFa8Y8BoO3vB6uAr6exIU8msYNPQAAAAAAAAAATSolPcPRM7qtl+26YTuMNGN7nLqd6OGzAACAPwAAgD8Ae/c9KegluhcGgTYfoGo2WKTeOrnVvLUAAIA/AACAP6YaND62VQC8PpwTO2kYqbg2q0S97YssugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.04857599999999995,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwVd06zWyXECUhpRSlIwBbJRN6AOMAXSUR0CSE3mlqJuVdX2UKGgGaAloD0MIHlIMkGhUX0CUhpRSlGgVTegDaBZHQJIXTd/J/5N1fZQoaAZoCWgPQwiFzJVBNfBjQJSGlFKUaBVN6ANoFkdAkh4v4Irvs3V9lChoBmgJaA9DCGmqJ/MPdGFAlIaUUpRoFU3oA2gWR0CSIrJlar3kdX2UKGgGaAloD0MIG9mVlpHhWkCUhpRSlGgVTegDaBZHQJIl+nXNC7d1fZQoaAZoCWgPQwjC9/4G7Uk1QJSGlFKUaBVNSQFoFkdAkjljbeuV5nV9lChoBmgJaA9DCJrrNNJSC15AlIaUUpRoFU3oA2gWR0CSPda/h2nsdX2UKGgGaAloD0MIN4qsNZQGY0CUhpRSlGgVTegDaBZHQJJAEiD/VAl1fZQoaAZoCWgPQwhwJTs2ArdtQJSGlFKUaBVNrwFoFkdAkkDAt8NQTHV9lChoBmgJaA9DCNBFQ8ajNlhAlIaUUpRoFU3oA2gWR0CSQNdKNAC5dX2UKGgGaAloD0MIi21S0VidYUCUhpRSlGgVTegDaBZHQJJBkYMvysl1fZQoaAZoCWgPQwhvLZPheKhbQJSGlFKUaBVN6ANoFkdAkkPc5Ke05XV9lChoBmgJaA9DCFvri4S2511AlIaUUpRoFU3oA2gWR0CSRYd+G47SdX2UKGgGaAloD0MIVHO5wVBpQMCUhpRSlGgVTT4BaBZHQJJG6yQgcLl1fZQoaAZoCWgPQwjj/46o0IxgQJSGlFKUaBVN6ANoFkdAkkwoqTbFj3V9lChoBmgJaA9DCHi0ccTaomFAlIaUUpRoFU3oA2gWR0CSVvBV+7UYdX2UKGgGaAloD0MI22lrRDAhX0CUhpRSlGgVTegDaBZHQJJXQxUNrj51fZQoaAZoCWgPQwjqBgq8kwNcQJSGlFKUaBVN6ANoFkdAkluybhFVk3V9lChoBmgJaA9DCCwpd5/jozrAlIaUUpRoFU0nAWgWR0CSXxO4XoC/dX2UKGgGaAloD0MI2V2gpEBOYUCUhpRSlGgVTegDaBZHQJJiMLv1DjR1fZQoaAZoCWgPQwi6TE2CN0w1wJSGlFKUaBVNMgFoFkdAknlqiTMaCXV9lChoBmgJaA9DCKEt51JcE2pAlIaUUpRoFU1mAmgWR0CSei6CUX54dX2UKGgGaAloD0MIRN5y9WNVW0CUhpRSlGgVTegDaBZHQJJ/OKQ7tAt1fZQoaAZoCWgPQwiEDyVa8n5SQJSGlFKUaBVN6ANoFkdAkoS7ah6By3V9lChoBmgJaA9DCI8aE2KuLmhAlIaUUpRoFU2EAmgWR0CSidWnCO3ldX2UKGgGaAloD0MI3qtWJvyLXkCUhpRSlGgVTegDaBZHQJKZcbyYoiN1fZQoaAZoCWgPQwhEUgslE6hgQJSGlFKUaBVN6ANoFkdAkp3zSPU8WHV9lChoBmgJaA9DCANC6+HLCVNAlIaUUpRoFU3oA2gWR0CSoOONHYpVdX2UKGgGaAloD0MI7rH0oQv2W0CUhpRSlGgVTegDaBZHQJKhp/5Lytp1fZQoaAZoCWgPQwizCpsBLpRfQJSGlFKUaBVN6ANoFkdAkqHAID5j6XV9lChoBmgJaA9DCBsuck/X/WBAlIaUUpRoFU3oA2gWR0CSpl7IDHOsdX2UKGgGaAloD0MI1ejVAKWEVUCUhpRSlGgVTegDaBZHQJNO5SIgvDh1fZQoaAZoCWgPQwjcR25NuidZQJSGlFKUaBVN6ANoFkdAk1xj7655JXV9lChoBmgJaA9DCEhwI2WLQ2JAlIaUUpRoFU3oA2gWR0CTXNNGmUGFdX2UKGgGaAloD0MItCH/zCBOU0CUhpRSlGgVTegDaBZHQJNlvYXfqHJ1fZQoaAZoCWgPQwieeTnsvptfQJSGlFKUaBVN6ANoFkdAk2ketbLU1HV9lChoBmgJaA9DCPyrx30rFmZAlIaUUpRoFU0kAmgWR0CTd9IQOFxodX2UKGgGaAloD0MI0jk/xfH5YECUhpRSlGgVTegDaBZHQJN+rBzmwJR1fZQoaAZoCWgPQwjS/3It2gpgQJSGlFKUaBVN6ANoFkdAk392LpA2RHV9lChoBmgJaA9DCABV3LjFYGxAlIaUUpRoFU2nAWgWR0CTg/2t+1BudX2UKGgGaAloD0MIrweT4uPXXkCUhpRSlGgVTegDaBZHQJOEqWw/xDt1fZQoaAZoCWgPQwi3Xz5ZMYReQJSGlFKUaBVN6ANoFkdAk4jdYr8R+XV9lChoBmgJaA9DCLk4KjdRtl9AlIaUUpRoFU3oA2gWR0CTjjH/tICmdX2UKGgGaAloD0MIQgkzbf9XXkCUhpRSlGgVTegDaBZHQJOcrujRD1J1fZQoaAZoCWgPQwj7rgj+N/FjQJSGlFKUaBVN6ANoFkdAk6Ay0a6z3XV9lChoBmgJaA9DCPGCiNS0sFlAlIaUUpRoFU3oA2gWR0CToj9GZuyedX2UKGgGaAloD0MINs07TtEoXECUhpRSlGgVTegDaBZHQJOjCji4rjJ1fZQoaAZoCWgPQwiM2CeAYphfQJSGlFKUaBVN6ANoFkdAk6YYyTINmXV9lChoBmgJaA9DCCxJnuv7P1xAlIaUUpRoFU3oA2gWR0CTqS0vGp++dX2UKGgGaAloD0MIaCRCI9j6WECUhpRSlGgVTegDaBZHQJO3sBltj1B1fZQoaAZoCWgPQwjhlSTPdXBkQJSGlFKUaBVNlwNoFkdAk7lvgeii7HV9lChoBmgJaA9DCFTDfk+smztAlIaUUpRoFU08AWgWR0CTuuq0dBBzdX2UKGgGaAloD0MIOgK4WbwsXECUhpRSlGgVTegDaBZHQJPD9qKxcFB1fZQoaAZoCWgPQwgPRBZpYrFrQJSGlFKUaBVN+gFoFkdAk9JKZ6Uqx3V9lChoBmgJaA9DCFq77UJznl9AlIaUUpRoFU3oA2gWR0CT0sP3BYV7dX2UKGgGaAloD0MIOwFNhA3gX0CUhpRSlGgVTegDaBZHQJPZQdQwbl11fZQoaAZoCWgPQwgf9GxWfRVdQJSGlFKUaBVN6ANoFkdAk9oBPj4pMHV9lChoBmgJaA9DCNy7Bn3pFlxAlIaUUpRoFU3oA2gWR0CT3jB6KLsKdX2UKGgGaAloD0MIs3vysFAgW0CUhpRSlGgVTegDaBZHQJPex35eqrB1fZQoaAZoCWgPQwgtsMdESnJUQJSGlFKUaBVN6ANoFkdAk+Jer+5vtXV9lChoBmgJaA9DCFPOF3svaV5AlIaUUpRoFU3oA2gWR0CT5uMJx//edX2UKGgGaAloD0MI9fV8zXKOWUCUhpRSlGgVTegDaBZHQJPz7N/vv0B1fZQoaAZoCWgPQwhgcw6eCTRYQJSGlFKUaBVN6ANoFkdAk/lRt52Qn3V9lChoBmgJaA9DCOi8xi5RCltAlIaUUpRoFU3oA2gWR0CT+gux8lXzdX2UKGgGaAloD0MIf03WqIdpX0CUhpRSlGgVTegDaBZHQJQAvBhx5s11fZQoaAZoCWgPQwjVJk7ud1ZqQJSGlFKUaBVNdwFoFkdAlKUsmOU+tHV9lChoBmgJaA9DCFiP+1brKWNAlIaUUpRoFU3oA2gWR0CUrdwbVBlddX2UKGgGaAloD0MItOcyNYnoYUCUhpRSlGgVTegDaBZHQJSvqUu+RHR1fZQoaAZoCWgPQwiUTE7tDEdiQJSGlFKUaBVN6ANoFkdAlLEsDB/I83V9lChoBmgJaA9DCPW9huA4QGBAlIaUUpRoFU3oA2gWR0CUukBF/hESdX2UKGgGaAloD0MIQl2kUJZaYECUhpRSlGgVTegDaBZHQJTJUa0hNdt1fZQoaAZoCWgPQwhO8E3TZ5pZQJSGlFKUaBVN6ANoFkdAlMnbDqGDc3V9lChoBmgJaA9DCINsWb6ukWpAlIaUUpRoFU1JAWgWR0CUzPyYG+sYdX2UKGgGaAloD0MISWWKOQiiYkCUhpRSlGgVTegDaBZHQJTQbiQ1aW51fZQoaAZoCWgPQwg6z9iX7LxiQJSGlFKUaBVN6ANoFkdAlNEmUfPom3V9lChoBmgJaA9DCITYmULnzFxAlIaUUpRoFU3oA2gWR0CU1RX+l0o0dX2UKGgGaAloD0MIahZod0iSYECUhpRSlGgVTegDaBZHQJTVst7KJVN1fZQoaAZoCWgPQwhq9kArMDFYQJSGlFKUaBVN6ANoFkdAlNlUyYXwb3V9lChoBmgJaA9DCHnKarqe9EdAlIaUUpRoFU0aAWgWR0CU5LXNke6qdX2UKGgGaAloD0MIFi8WhsgAVkCUhpRSlGgVTegDaBZHQJTrliuuA7R1fZQoaAZoCWgPQwhS0y6mmapcQJSGlFKUaBVN6ANoFkdAlPC7PdEb53V9lChoBmgJaA9DCIo+H2VE3GJAlIaUUpRoFU3oA2gWR0CU8Xi9Zid8dX2UKGgGaAloD0MILXsS2JyqYUCUhpRSlGgVTegDaBZHQJT4KFpPAO91fZQoaAZoCWgPQwjeWibD8edZQJSGlFKUaBVN6ANoFkdAlP8d87ZFonV9lChoBmgJaA9DCMaGbvYHJl9AlIaUUpRoFU3oA2gWR0CVCRgJkXk6dX2UKGgGaAloD0MIPdS2YRQmW0CUhpRSlGgVTegDaBZHQJUKobkwN9Z1fZQoaAZoCWgPQwinIarw57xiQJSGlFKUaBVN6ANoFkdAlRQSro4dZXV9lChoBmgJaA9DCIGVQ4ts611AlIaUUpRoFU3oA2gWR0CVI1SGahHtdX2UKGgGaAloD0MIkSv1LAgKYUCUhpRSlGgVTegDaBZHQJUj0hxHXmN1fZQoaAZoCWgPQwg6WtWSDs5hQJSGlFKUaBVN6ANoFkdAlSpWza9K3HV9lChoBmgJaA9DCKoNTkQ/oGFAlIaUUpRoFU3oA2gWR0CVKx+jua4MdX2UKGgGaAloD0MISih9IeStXkCUhpRSlGgVTegDaBZHQJUvW1y/9Hd1fZQoaAZoCWgPQwjjxi3m5+RiQJSGlFKUaBVN6ANoFkdAlS/2Xw9aEHV9lChoBmgJaA9DCO2fpwGDHVlAlIaUUpRoFU3oA2gWR0CVM9OCoS+QdX2UKGgGaAloD0MIb/HwngPKX0CUhpRSlGgVTegDaBZHQJU/umxdIG11fZQoaAZoCWgPQwgsSZ7re/JgQJSGlFKUaBVN6ANoFkdAlUYwHRkVe3V9lChoBmgJaA9DCFddh2rKemxAlIaUUpRoFU2RAWgWR0CVRzp2U0N0dX2UKGgGaAloD0MIFvn1Q2yxXkCUhpRSlGgVTegDaBZHQJVK+AkLQX11fZQoaAZoCWgPQwjfp6rQQN9aQJSGlFKUaBVN6ANoFkdAlUudK/VRUHV9lChoBmgJaA9DCCy8y0V86VpAlIaUUpRoFU3oA2gWR0CVUY9wWFewdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 160,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47917571a3898bf318193f4017894827cff473896e1685ea74490665e6041df6
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:232a052adb377e7bd0e0dccc70e2c9efc55a7d310ba38989715b67243a4559d2
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf1eed78e2181ac7d0bfaf34b2e556080923b24d791225b4547e07674ff489e5
|
3 |
+
size 252241
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 229.93609156688208, "std_reward": 14.333854753941266, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T19:38:44.598380"}
|