--- license: mit tags: - generated_from_trainer metrics: - f1 model-index: - name: rate-jokes-bert results: [] --- # rate-jokes-bert This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0871 - F1: 0.0444 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 64 | 2.4209 | 0.0028 | | No log | 2.0 | 128 | 2.3785 | 0.0130 | | No log | 3.0 | 192 | 2.3215 | 0.0729 | | No log | 4.0 | 256 | 2.1787 | 0.0444 | | No log | 5.0 | 320 | 2.1038 | 0.0444 | | No log | 6.0 | 384 | 2.0944 | 0.0444 | | No log | 7.0 | 448 | 2.0911 | 0.0444 | | 2.2915 | 8.0 | 512 | 2.0901 | 0.0444 | | 2.2915 | 9.0 | 576 | 2.0892 | 0.0444 | | 2.2915 | 10.0 | 640 | 2.0871 | 0.0444 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3