File size: 902 Bytes
bc1ada8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from typing import Tuple

import torch.nn as nn
from torch import Tensor

from layers.encoder_layer import EncoderLayer

class Encoder(nn.Module):
    """
    A transformer Encoder (no embeddings or positional embeddings)

    Args:
    """
    def __init__(
        self,
        d_model: int,
        num_heads: int,
        d_ff: int,
        dropout_p: int,
        num_layers: int,
    ) -> None:
        super(Encoder, self).__init__()
        self.layers = nn.ModuleList(
            [
                EncoderLayer(
                    d_model=d_model,
                    num_heads=num_heads,
                    d_ff=d_ff,
                    dropout_p=dropout_p,
                )
                for _ in range(num_layers)
            ]
        )

    def forward(self, x: Tensor, src_mask: Tensor):
        for layer in self.layers:
            x, attn = layer(x, src_mask)
        return x