File size: 8,251 Bytes
b8a6dde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
import torch
import torch.nn as nn
from torch import Tensor
from torch.utils.data import DataLoader, Dataset
import torchmetrics
from torch.utils.tensorboard import SummaryWriter

from tqdm import tqdm

# from datasets import load_dataset
from load_dataset import load_local_dataset
from transformer import get_model
from config import load_config, get_weights_file_path
from validate import run_validation
from tokenizer import get_or_build_local_tokenizer

from pathlib import Path

from dataset import BilingualDataset
from bleu import calculate_bleu_score
from decode_method import greedy_decode

def get_local_dataset_tokenizer(config):
    train_ds_raw = load_local_dataset(
        dataset_filename='datasets/'+config['dataset']['train_dataset'],
        src_lang=config['dataset']['src_lang'],
        tgt_lang=config['dataset']['tgt_lang']
    )
    val_ds_raw = load_local_dataset(
        dataset_filename='datasets/'+config['dataset']['validate_dataset'],
        src_lang=config['dataset']['src_lang'],
        tgt_lang=config['dataset']['tgt_lang']
    )

    src_tokenizer = get_or_build_local_tokenizer(
        config=config, 
        ds=train_ds_raw + val_ds_raw, 
        lang=config['dataset']['src_lang'], 
        tokenizer_type=config['dataset']['src_tokenizer']
    )
    tgt_tokenizer = get_or_build_local_tokenizer(
        config=config, 
        ds=train_ds_raw + val_ds_raw, 
        lang=config['dataset']['tgt_lang'], 
        tokenizer_type=config['dataset']['tgt_tokenizer']
    )

    train_ds = BilingualDataset(
        ds=train_ds_raw,
        src_tokenizer=src_tokenizer,
        tgt_tokenizer=tgt_tokenizer,
        src_lang=config['dataset']['src_lang'],
        tgt_lang=config['dataset']['tgt_lang'],
        src_max_seq_len=config['dataset']['src_max_seq_len'],
        tgt_max_seq_len=config['dataset']['tgt_max_seq_len'],
    )
    val_ds = BilingualDataset(
        ds=val_ds_raw,
        src_tokenizer=src_tokenizer,
        tgt_tokenizer=tgt_tokenizer,
        src_lang=config['dataset']['src_lang'],
        tgt_lang=config['dataset']['tgt_lang'],
        src_max_seq_len=config['dataset']['src_max_seq_len'],
        tgt_max_seq_len=config['dataset']['tgt_max_seq_len'],
    )

    src_max_seq_len = 0
    tgt_max_seq_len = 0    
    for item in (train_ds_raw + val_ds_raw):
        src_ids = src_tokenizer.encode(item['translation'][config['dataset']['src_lang']]).ids
        tgt_ids = tgt_tokenizer.encode(item['translation'][config['dataset']['tgt_lang']]).ids
        src_max_seq_len = max(src_max_seq_len, len(src_ids))
        tgt_max_seq_len = max(tgt_max_seq_len, len(tgt_ids))
    print(f'Max length of source sequence: {src_max_seq_len}')
    print(f'Max length of target sequence: {tgt_max_seq_len}')

    train_dataloader = DataLoader(train_ds, batch_size=config['train']['batch_size'], shuffle=True)
    val_dataloader = DataLoader(val_ds, batch_size=1, shuffle=True)

    return train_dataloader, val_dataloader, src_tokenizer, tgt_tokenizer

def train_model(config):
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print(f'Using device {device}')    

    Path(config['model']['model_folder']).mkdir(parents=True, exist_ok=True)

    train_dataloader, val_dataloader, src_tokenizer, tgt_tokenizer = get_local_dataset_tokenizer(config)
    model = get_model(config, src_tokenizer.get_vocab_size(), tgt_tokenizer.get_vocab_size()).to(device)

    print(f'{src_tokenizer.get_vocab_size()}, {tgt_tokenizer.get_vocab_size()}')

    #Tensorboard
    writer = SummaryWriter(config['experiment_name'])

    optimizer = torch.optim.Adam(model.parameters(), lr=config['train']['lr'], eps=1e-9)
    
    from transformers import get_linear_schedule_with_warmup
    scheduler = get_linear_schedule_with_warmup(
        optimizer,
        num_warmup_steps=config['train']['warm_up_steps'],
        num_training_steps=len(train_dataloader) * config['train']['num_epochs']+1
    )

    initial_epoch = 0 
    global_step = 0
    if config['model']['preload']:
        model_filename = get_weights_file_path(config, config['model']['preload'])
        print(f'Preloading model from {model_filename}')
        state = torch.load(model_filename, map_location=device)

        initial_epoch = state['epoch']+1
        model.load_state_dict(state['model_state_dict'])
        optimizer.load_state_dict(state['optimizer_state_dict'])
        scheduler.load_state_dict(state['scheduler_state_dict'])
        global_step = state['global_step']
    
    loss_fn = nn.CrossEntropyLoss(
        ignore_index=src_tokenizer.token_to_id('<pad>'), 
        label_smoothing=config['train']['label_smoothing'],
    ).to(device)

    print(f"Training model with {model.count_parameters()} params.")

    patience = config['train']['patience']
    best_state = {
        'model_state_dict': model.state_dict(),
        'scheduler_state_dict': scheduler.state_dict(),
        'optimizer_state_dict': optimizer.state_dict(),
        'loss': 9999999.99
    }

    for epoch in range(initial_epoch, config['train']['num_epochs']):
        batch_iterator = tqdm(train_dataloader, desc=f'Proceesing epoch {epoch:02d}')
        for batch in batch_iterator:
            model.train()

            encoder_input = batch['encoder_input'].to(device) # (batch, seq_len)
            decoder_input = batch['decoder_input'].to(device) # (batch. seq_len)
            encoder_mask = batch['encoder_mask'].to(device) # (batch, 1, 1, seq_len)
            decoder_mask = batch['decoder_mask'].to(device) # (batch, 1, seq_len, seq_len)
            
            encoder_output = model.encode(encoder_input, encoder_mask) # (batch, seq_len, d_model)
            decoder_output, attn = model.decode(encoder_output, encoder_mask, decoder_input, decoder_mask) # (batch, seq_len, d_model)
            proj_output = model.project(decoder_output) # (batch, seq_len, tgt_vocab_size)

            label = batch['label'].to(device) # (batch, seq_len)

            loss = loss_fn(proj_output.view(-1, tgt_tokenizer.get_vocab_size()), label.view(-1))
            batch_iterator.set_postfix({f"loss":f"{loss.item():6.3f}"})

            writer.add_scalar('train_loss', loss.item(), global_step)
            writer.flush()

            global_step += 1
            if global_step % patience == 0:
                if loss > best_state['loss']:
                    model.load_state_dict(best_state['model_state_dict'])
                    optimizer.load_state_dict(best_state['optimizer_state_dict'])
                    scheduler.load_state_dict(best_state['scheduler_state_dict'])
                    continue
                else:
                    best_state = {
                        'model_state_dict': model.state_dict(),
                        'scheduler_state_dict': scheduler.state_dict(),
                        'optimizer_state_dict': optimizer.state_dict(),
                        'loss': 9999999.99
                    }
            loss.backward()

            optimizer.step()
            scheduler.step()
            optimizer.zero_grad()

        run_validation(model, val_dataloader, src_tokenizer, tgt_tokenizer, device, lambda msg: batch_iterator.write(msg), global_step, writer)

        model_filename = get_weights_file_path(config, f'{epoch:02d}')
        torch.save({
            'epoch': epoch,
            'model_state_dict': best_state['model_state_dict'],
            'scheduler_state_dict': best_state['scheduler_state_dict'],
            'optimizer_state_dict': best_state['optimizer_state_dict'],
            'global_step': global_step,
        }, model_filename)

        # print(f"Bleu score: {calculate_bleu_score(model, val_dataloader, src_tokenizer, tgt_tokenizer, device)}")

        if config['train']['on_colab']:
            # if (epoch % 5) == 0:
            #     model_zip_filename = f'model_epoch_{epoch}.zip'
            #     os.system(f'zip -r {model_zip_filename} /content/silver-spoon/weights')
            runs_zip_filename = f'runs_epoch_{epoch}.zip'
            os.system(f"zip -r {runs_zip_filename} /content/silver-spoon/{config['experiment_name']}")


if __name__ == '__main__':
    config = load_config(file_name='config.yaml')
    train_model(config)