File size: 8,265 Bytes
b8a6dde 95e0aba b8a6dde |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import os
import torch
import torch.nn as nn
from torch import Tensor
from torch.utils.data import DataLoader, Dataset
import torchmetrics
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
# from datasets import load_dataset
from load_dataset import load_local_dataset
from transformer import get_model
from config import load_config, get_weights_file_path
from validate import run_validation
from tokenizer import get_or_build_local_tokenizer
from pathlib import Path
from dataset import BilingualDataset
from bleu import calculate_bleu_score
from decode_method import greedy_decode
def get_local_dataset_tokenizer(config):
train_ds_raw = load_local_dataset(
dataset_filename='datasets/'+config['dataset']['train_dataset'],
src_lang=config['dataset']['src_lang'],
tgt_lang=config['dataset']['tgt_lang']
)
val_ds_raw = load_local_dataset(
dataset_filename='datasets/'+config['dataset']['validate_dataset'],
src_lang=config['dataset']['src_lang'],
tgt_lang=config['dataset']['tgt_lang']
)
src_tokenizer = get_or_build_local_tokenizer(
config=config,
ds=train_ds_raw + val_ds_raw,
lang=config['dataset']['src_lang'],
tokenizer_type=config['dataset']['src_tokenizer']
)
tgt_tokenizer = get_or_build_local_tokenizer(
config=config,
ds=train_ds_raw + val_ds_raw,
lang=config['dataset']['tgt_lang'],
tokenizer_type=config['dataset']['tgt_tokenizer']
)
train_ds = BilingualDataset(
ds=train_ds_raw,
src_tokenizer=src_tokenizer,
tgt_tokenizer=tgt_tokenizer,
src_lang=config['dataset']['src_lang'],
tgt_lang=config['dataset']['tgt_lang'],
src_max_seq_len=config['dataset']['src_max_seq_len'],
tgt_max_seq_len=config['dataset']['tgt_max_seq_len'],
)
val_ds = BilingualDataset(
ds=val_ds_raw,
src_tokenizer=src_tokenizer,
tgt_tokenizer=tgt_tokenizer,
src_lang=config['dataset']['src_lang'],
tgt_lang=config['dataset']['tgt_lang'],
src_max_seq_len=config['dataset']['src_max_seq_len'],
tgt_max_seq_len=config['dataset']['tgt_max_seq_len'],
)
src_max_seq_len = 0
tgt_max_seq_len = 0
for item in (train_ds_raw + val_ds_raw):
src_ids = src_tokenizer.encode(item['translation'][config['dataset']['src_lang']]).ids
tgt_ids = tgt_tokenizer.encode(item['translation'][config['dataset']['tgt_lang']]).ids
src_max_seq_len = max(src_max_seq_len, len(src_ids))
tgt_max_seq_len = max(tgt_max_seq_len, len(tgt_ids))
print(f'Max length of source sequence: {src_max_seq_len}')
print(f'Max length of target sequence: {tgt_max_seq_len}')
train_dataloader = DataLoader(train_ds, batch_size=config['train']['batch_size'], shuffle=True)
val_dataloader = DataLoader(val_ds, batch_size=1, shuffle=True)
return train_dataloader, val_dataloader, src_tokenizer, tgt_tokenizer
def train_model(config):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f'Using device {device}')
Path(config['model']['model_folder']).mkdir(parents=True, exist_ok=True)
train_dataloader, val_dataloader, src_tokenizer, tgt_tokenizer = get_local_dataset_tokenizer(config)
model = get_model(config, src_tokenizer.get_vocab_size(), tgt_tokenizer.get_vocab_size()).to(device)
print(f'{src_tokenizer.get_vocab_size()}, {tgt_tokenizer.get_vocab_size()}')
#Tensorboard
writer = SummaryWriter(config['experiment_name'])
optimizer = torch.optim.Adam(model.parameters(), lr=config['train']['lr'], eps=1e-9)
from transformers import get_linear_schedule_with_warmup
scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=config['train']['warm_up_steps'],
num_training_steps=len(train_dataloader) * config['train']['num_epochs']+1
)
initial_epoch = 0
global_step = 0
if config['model']['preload']:
model_filename = get_weights_file_path(config, config['model']['preload'])
print(f'Preloading model from {model_filename}')
state = torch.load(model_filename, map_location=device)
initial_epoch = state['epoch']+1
model.load_state_dict(state['model_state_dict'])
optimizer.load_state_dict(state['optimizer_state_dict'])
scheduler.load_state_dict(state['scheduler_state_dict'])
global_step = state['global_step']
loss_fn = nn.CrossEntropyLoss(
ignore_index=src_tokenizer.token_to_id('<pad>'),
label_smoothing=config['train']['label_smoothing'],
).to(device)
print(f"Training model with {model.count_parameters()} params.")
patience = config['train']['patience']
best_state = {
'model_state_dict': model.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': 9999999.99
}
for epoch in range(initial_epoch, config['train']['num_epochs']):
batch_iterator = tqdm(train_dataloader, desc=f'Proceesing epoch {epoch:02d}')
for batch in batch_iterator:
model.train()
encoder_input = batch['encoder_input'].to(device) # (batch, seq_len)
decoder_input = batch['decoder_input'].to(device) # (batch. seq_len)
encoder_mask = batch['encoder_mask'].to(device) # (batch, 1, 1, seq_len)
decoder_mask = batch['decoder_mask'].to(device) # (batch, 1, seq_len, seq_len)
encoder_output = model.encode(encoder_input, encoder_mask) # (batch, seq_len, d_model)
decoder_output, attn = model.decode(encoder_output, encoder_mask, decoder_input, decoder_mask) # (batch, seq_len, d_model)
proj_output = model.project(decoder_output) # (batch, seq_len, tgt_vocab_size)
label = batch['label'].to(device) # (batch, seq_len)
loss = loss_fn(proj_output.view(-1, tgt_tokenizer.get_vocab_size()), label.view(-1))
batch_iterator.set_postfix({f"loss":f"{loss.item():6.3f}"})
writer.add_scalar('train_loss', loss.item(), global_step)
writer.flush()
global_step += 1
if global_step % patience == 0:
if loss > best_state['loss']:
model.load_state_dict(best_state['model_state_dict'])
optimizer.load_state_dict(best_state['optimizer_state_dict'])
scheduler.load_state_dict(best_state['scheduler_state_dict'])
continue
else:
best_state = {
'model_state_dict': model.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': 9999999.99
}
loss.backward()
optimizer.step()
scheduler.step()
optimizer.zero_grad()
run_validation(model, val_dataloader, src_tokenizer, tgt_tokenizer, device, lambda msg: batch_iterator.write(msg), global_step, writer)
model_filename = get_weights_file_path(config, f'{epoch:02d}')
torch.save({
'epoch': epoch,
'model_state_dict': best_state['model_state_dict'],
'scheduler_state_dict': best_state['scheduler_state_dict'],
'optimizer_state_dict': best_state['optimizer_state_dict'],
'global_step': global_step,
}, model_filename)
# print(f"Bleu score: {calculate_bleu_score(model, val_dataloader, src_tokenizer, tgt_tokenizer, device)}")
if config['train']['on_colab']:
# if (epoch % 5) == 0:
# model_zip_filename = f'model_epoch_{epoch}.zip'
# os.system(f'zip -r {model_zip_filename} /content/silver-spoon/weights')
runs_zip_filename = f'runs_epoch_{epoch}.zip'
os.system(f"zip -r {runs_zip_filename} /content/silver-spoon/{config['experiment_name']}")
if __name__ == '__main__':
config = load_config(file_name='/config/config_final.yaml')
train_model(config)
|