homemade_lo_vi / layers /encoder_layer.py
moiduy04's picture
Upload 18 files
bc1ada8
raw
history blame
1.4 kB
from typing import Tuple
import torch.nn as nn
from torch import Tensor
from modules.multi_head_attention import MultiHeadAttention
from modules.positionwise_feed_forward import PositionwiseFeedForwardNetwork
class EncoderLayer(nn.Module):
"""
An Encoder layer.
Args:
"""
def __init__(
self,
d_model: int,
num_heads: int,
d_ff: int,
dropout_p: int,
) -> None:
super(EncoderLayer, self).__init__()
self.self_attn_prenorm = nn.LayerNorm(d_model)
self.self_attn = MultiHeadAttention(d_model=d_model, num_heads=num_heads, dropout_p=dropout_p)
self.self_attn_dropout = nn.Dropout(p=dropout_p)
self.feed_forward_prenorm = nn.LayerNorm(d_model)
self.feed_forward = PositionwiseFeedForwardNetwork(d_model=d_model, d_ff=d_ff, dropout_p=dropout_p)
def forward(self, inputs: Tensor, src_mask: Tensor = None) -> Tuple[Tensor, Tensor]:
# Normalize -> sublayer -> dropout -> add residual
residual = inputs
inputs = self.self_attn_prenorm(inputs)
outputs, attn = self.self_attn(inputs, inputs, inputs, src_mask)
outputs = self.self_attn_dropout(outputs) + residual
residual = outputs
outputs = self.feed_forward_prenorm(outputs)
outputs = self.feed_forward(outputs)
outputs += residual
return outputs, attn