|
import math |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch import Tensor |
|
|
|
|
|
class PositionalEncoding(nn.Module): |
|
r""" |
|
Positional Encoding in "Attention Is All You Need" (section 3.5). |
|
|
|
"Attention Is All You Need" uses sine and cosine functions of different frequencies: |
|
PE_(pos, 2i) = sin(pos / power(10000, 2i / d_model)) |
|
PE_(pos, 2i+1) = cos(pos / power(10000, 2i / d_model)) |
|
only change is that calculations are done with -log(power(10000, 2i / d_model)) |
|
|
|
Uses OpenSpeech's PositionalEncoding, as I don't see the point in coding this from scratch. |
|
""" |
|
def __init__(self, d_model: int, dropout_p: float, max_length: int = 5000) -> None: |
|
super(PositionalEncoding, self).__init__() |
|
|
|
self.dropout = nn.Dropout(p=dropout_p) |
|
|
|
pe = torch.zeros(max_length, d_model, requires_grad=False) |
|
position = torch.arange(0, max_length, dtype=torch.float).unsqueeze(1) |
|
div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)) |
|
pe[:, 0::2] = torch.sin(position * div_term) |
|
pe[:, 1::2] = torch.cos(position * div_term) |
|
pe = pe.unsqueeze(0) |
|
self.register_buffer("pe", pe) |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
x = x + (self.pe[:, :x.shape[1], :]).requires_grad_(False) |
|
return self.dropout(x) |