from typing import Tuple import torch.nn as nn from torch import Tensor from layers.encoder_layer import EncoderLayer class Encoder(nn.Module): """ A transformer Encoder (no embeddings or positional embeddings) Args: """ def __init__( self, d_model: int, num_heads: int, d_ff: int, dropout_p: int, num_layers: int, ) -> None: super(Encoder, self).__init__() self.layers = nn.ModuleList( [ EncoderLayer( d_model=d_model, num_heads=num_heads, d_ff=d_ff, dropout_p=dropout_p, ) for _ in range(num_layers) ] ) def forward(self, x: Tensor, src_mask: Tensor): for layer in self.layers: x, attn = layer(x, src_mask) return x