import math import torch import torch.nn as nn from torch import Tensor class PositionalEncoding(nn.Module): r""" Positional Encoding in "Attention Is All You Need" (section 3.5). "Attention Is All You Need" uses sine and cosine functions of different frequencies: PE_(pos, 2i) = sin(pos / power(10000, 2i / d_model)) PE_(pos, 2i+1) = cos(pos / power(10000, 2i / d_model)) only change is that calculations are done with -log(power(10000, 2i / d_model)) Uses OpenSpeech's PositionalEncoding, as I don't see the point in coding this from scratch. """ def __init__(self, d_model: int, dropout_p: float, max_length: int = 5000) -> None: super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout_p) pe = torch.zeros(max_length, d_model, requires_grad=False) position = torch.arange(0, max_length, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.register_buffer("pe", pe) def forward(self, x: Tensor) -> Tensor: x = x + (self.pe[:, :x.shape[1], :]).requires_grad_(False) return self.dropout(x)