Upload PPO LunarLander-v2 trained agent
Browse files- README.md +35 -1
- config.json +1 -0
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
CHANGED
@@ -1,3 +1,37 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 203.36 +/- 106.26
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x000002478ECF99E0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x000002478ECF9A80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x000002478ECF9B20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x000002478ECF9BC0>", "_build": "<function ActorCriticPolicy._build at 0x000002478ECF9C60>", "forward": "<function ActorCriticPolicy.forward at 0x000002478ECF9D00>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x000002478ECF9DA0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x000002478ECF9E40>", "_predict": "<function ActorCriticPolicy._predict at 0x000002478ECF9EE0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x000002478ECF9F80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x000002478ECFA020>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x000002478ECFA0C0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x000002478ECFCB00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690277099698643669, "learning_rate": 0.0002, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAANpslj1xyCm7XTCGvTUKODzW+Rg8QlIivQAAAAAAAIA/vdN3vk/dOD+xhzm+UumwvgXxnr2HDLU7AAAAAAAAAADGO4G+AdZvPhjqjD3tD3e+jF6MPJs3/zgAAAAAAAAAALoHUj4fabY89AHDvflbhbsTQ08+0/2AvQAAgD8AAIA/hv3QPmBYjz6T2gm+l6V4vk6xSD23Nay9AAAAAAAAAABmJp25SNmSusVZmLkRbes020IvO68VrzgAAIA/AACAP2CzBL5useU9/uExPWyET75NX5E6+gR2OgAAAAAAAAAAkyg8Pi+aID+rfM68rg6/vrlWTT0VqF+8AAAAAAAAAADq5G2+CEqDvKXjODrtkDY43vjjPd2BCLkAAIA/AACAPzMZXr0ukpU/5EaBvhB+Cr+yxWS9pePhvQAAAAAAAAAAmrAhvU4wej/SMc69ESnuvn+CPLyTStk7AAAAAAAAAAANa/c9e+DFupecjjrJgaW4JcTtuuI0kLkAAIA/AACAP8BGDz5zXEA/WBLQPXZwnL6bxtQ9iFDYvAAAAAAAAAAAE9lDPhKyhzwAlAS0zj3Rsin1ET4QFwc0AACAPwAAgD8aeDO9ycQdP/X9Zr2sssC+jlxqvCNZPj0AAAAAAAAAAEAhp71H3XM/NLMKvmx42746ur68/sZgvQAAAAAAAAAAWhW+Pa7vk7pgv0EzLdgfMGfW5rru5MizAACAPwAAgD/aKI29shNUP3alv7xpdNW+nGzwu7r5j7oAAAAAAAAAAABdzLwI/6k/vqKlvTPJ9754PlY8kn4dvQAAAAAAAAAAJr+mPZ9wrLsfq0g9kyMJvpxrAzs429e+AACAPwAAgD8NZVo+us0CveIEgDuMphe6wqRlvtoBrroAAIA/AACAP5OcPr7KX2I+5oGmPWc0VL565cK5JjOnPAAAAAAAAAAAM9cMPIQlpz9dWaU9XmADv03/kjxSm1M9AAAAAAAAAAAamHk+RcytPE7wjTozQA45TFxBPiZIurkAAIA/AACAP30Nib5250e8Ys0eu7xaAbk8WKY9ZlE5OgAAgD8AAIA/zcu9PAUEIT6mtw293pI6vh1v4Tz9n/u7AAAAAAAAAADNj5w8gtKEPh5AjL0yJYi+02uwvDWl/zwAAAAAAAAAAJrvwD0RN44/agnKPcLn676k1J094uMVvQAAAAAAAAAAGsMePWbumT/fqCM+YLHlvtgJKj3eym89AAAAAAAAAAAAOGQ9cmKfP8hGPz6e5cq+luC0PToFaT0AAAAAAAAAAICLEL4EJNQ+i9r8vZfqnL5eTkK9tv/7OwAAAAAAAAAAjp/JvgQ8gj3KNI88TWRNPEBksr6liWc9AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVGQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGrwaBRQ792MAWyUS/GMAXSUR0Cb7mlF+d9VdX2UKGgGR0Bgm2Fg2IfsaAdN6ANoCEdAm+7uHerMknV9lChoBkdAcDSRISUTtmgHTQIBaAhHQJvvGqYJE6V1fZQoaAZHwDBEUBXCCSRoB0vxaAhHQJvvJNEgGKR1fZQoaAZHQGMZbWNFSbZoB03oA2gIR0Cb75A9mpVCdX2UKGgGR0AKl+1Bt1p1aAdLpmgIR0Cb7/Ta0x/NdX2UKGgGR0Bx7F0GNaQnaAdNKAFoCEdAm/GtTkyULXV9lChoBkdAcJuZha1Ti2gHTSYBaAhHQJvxxZvDP4V1fZQoaAZHQBAWSEDhcZ9oB0vIaAhHQJvyZnYg7o11fZQoaAZHwDEBRbbDdgxoB0upaAhHQJvzD2xptaZ1fZQoaAZHQHA8HARChOBoB0v7aAhHQJvz9rHlwLp1fZQoaAZHQHGLBYeT3ZhoB00yAWgIR0Cb9L84xUNsdX2UKGgGR8Ay7JgLJCBxaAdL22gIR0Cb95F9a2WqdX2UKGgGR0BweBDb8FY/aAdL42gIR0Cb96FAVwgldX2UKGgGR0BrsK8xsVL0aAdNHQFoCEdAm/fOgxrSE3V9lChoBkdAY9DByCFsYWgHTegDaAhHQJv33cEeQuF1fZQoaAZHQG6ndcB2fTVoB00BAWgIR0Cb995AyEcsdX2UKGgGR0BuELpzLfUGaAdNCgFoCEdAm/gJMtbs4XV9lChoBkdAcHhSDh99dGgHTQMBaAhHQJv4qLNwBHV1fZQoaAZHQG08JYDDCP9oB00aAWgIR0Cb+b77bcoIdX2UKGgGR0BBfeYMOPNnaAdL2GgIR0Cb+hWK/EfldX2UKGgGR0BgYUN+b3GoaAdN6ANoCEdAm/owpKBd2XV9lChoBkdAbz5gJkXk52gHS/toCEdAm/qlEuxrz3V9lChoBkdAY6hrt3OfNGgHTegDaAhHQJv61wjt5Ut1fZQoaAZHQGs19QGfPHFoB00HAWgIR0Cb+4doWYWtdX2UKGgGR0BwimgIyCWeaAdNEwFoCEdAm/vGPDHfdnV9lChoBkdAcRHEVnEl3WgHS+9oCEdAm/w3DFZPmHV9lChoBkdAbefSjxkNF2gHTQkBaAhHQJv8jIU8FIN1fZQoaAZHQGvbm0mdAgRoB00TAWgIR0Cb/MsgMc6vdX2UKGgGR0BuGtgtvn8saAdNDAFoCEdAm/0oYWLxZ3V9lChoBkdAbye+LWI42mgHTcMCaAhHQJv9SzIFNcp1fZQoaAZHQGxxYTK1XvJoB007AWgIR0Cb/ZELYwqRdX2UKGgGR0BADZWRzRx+aAdL22gIR0Cb/lh7mdRSdX2UKGgGR0Bwil6Rhc7haAdL+mgIR0Cb/odfsu3+dX2UKGgGR0Bs2xfF72L6aAdL+GgIR0Cb/wRXfZVXdX2UKGgGR0BvDLcTJyQxaAdL72gIR0CcAAzKcNH6dX2UKGgGR0BsIdJpWV/uaAdNHgFoCEdAnAANFWn0kHV9lChoBkdAYKECFsYVI2gHTegDaAhHQJwApR8+ial1fZQoaAZHQDfUiMYMvytoB0vOaAhHQJwCbJjlPrR1fZQoaAZHQG/9YR/ViF1oB0vxaAhHQJwDa12JSBN1fZQoaAZHQHChfLcKw6hoB0v3aAhHQJwDeXsw+MZ1fZQoaAZHQG2S6rWAf+1oB0v0aAhHQJwDhsHjZL91fZQoaAZHQHErQP7N0NloB0vmaAhHQJwEl5Rjz7N1fZQoaAZHQG1Am51/2CdoB00UAWgIR0CcBPDYAbQ1dX2UKGgGR0Bs5Hw5NoJzaAdNGAFoCEdAnAV7/82rGXV9lChoBkdAcA4UNrj5sWgHS+1oCEdAnByKFEiMYXV9lChoBkdAMYKagElme2gHS9ZoCEdAnBz91ZDArXV9lChoBkdAa1qjrRjSX2gHTQUBaAhHQJwdM2n889x1fZQoaAZHQG6z5s0pEx9oB003AWgIR0CcHaVhkRSQdX2UKGgGR0BHbO0TlDF7aAdL8mgIR0CcHbMr3CbddX2UKGgGR0BwzXua4MF2aAdNFQFoCEdAnB4Tmr8zh3V9lChoBkfAKHxBE8aGYmgHS9loCEdAnB4e6y0KJHV9lChoBkdAb2ES4e9zwWgHS+5oCEdAnB64Ia99MXV9lChoBkdAb3R1AZ88cWgHTRsBaAhHQJwe9RekYXR1fZQoaAZHQHF5HmV7hNxoB00JAWgIR0CcHwBTn7pFdX2UKGgGR0BwWqNZNfw7aAdL92gIR0CcH5hi9ZiedX2UKGgGR0BxfJIre67NaAdL7mgIR0CcIEKLbYbsdX2UKGgGR0Bt6nYlIEr5aAdNBAFoCEdAnCBvAGjbjHV9lChoBkdAbufOk+HJtGgHTaMCaAhHQJwhMFTvRZ51fZQoaAZHQHCaPiDM/yJoB00CAWgIR0CcIc/20zCUdX2UKGgGR0BwQtAdGRV7aAdNHwFoCEdAnCKiemNzbXV9lChoBkdAOrQU+LWI42gHS9JoCEdAnCQDW07bL3V9lChoBkdAcVWaufVZtGgHTRoBaAhHQJwkq9SMtK91fZQoaAZHQHEZbHyVfNRoB017AWgIR0CcJPuG9HtndX2UKGgGR0BvKvWFvhqCaAdNMQFoCEdAnCUu5WilBXV9lChoBkdAR75FocrAg2gHS9NoCEdAnCVIdIXj2nV9lChoBkdAbPjGEwnIAGgHS/poCEdAnCYSE+Pik3V9lChoBkdAa+jj0cwQDmgHTR4BaAhHQJwm1SaVlf91fZQoaAZHQHERLUkOZstoB0vyaAhHQJwnMA2hqTN1fZQoaAZHQDhvKzRhMJxoB0vPaAhHQJwnYcHWz4V1fZQoaAZHQG5GeOn2qT9oB00YAWgIR0CcJ6IMjNY9dX2UKGgGR0BuIPQdCE6DaAdL8GgIR0CcKF2MsH0LdX2UKGgGR0Bw4OKP4mCzaAdL7GgIR0CcKF4VARkFdX2UKGgGR0BtaNUKiO/+aAdL+mgIR0CcKGs5XEIgdX2UKGgGR0BvJM8La24NaAdNDgFoCEdAnCkOrhisn3V9lChoBkdAW9A50bLlm2gHTegDaAhHQJwp2GRFI/Z1fZQoaAZHQHFnZ26kIopoB0vuaAhHQJwp/CemNzd1fZQoaAZHQG8WGapgkTpoB00SAWgIR0CcKq2P1ct5dX2UKGgGR0Bw9DI2fkFOaAdNCgFoCEdAnCq4j0L+gnV9lChoBkdAcDVCiyprDmgHTQIBaAhHQJwrK9XcQAd1fZQoaAZHQHEy+eSSvDBoB00EAWgIR0CcK0vqC6H1dX2UKGgGR0BxC7/p+tr9aAdNLwFoCEdAnCxVu76HkHV9lChoBkdAbpXyyUs4DWgHTQYBaAhHQJws39XLeRB1fZQoaAZHQGuJSXMQmNRoB00MAWgIR0CcLPdZaFEidX2UKGgGR0BjSMan752yaAdN6ANoCEdAnC1dPHktE3V9lChoBkdAZ7JH4Glhw2gHTSgBaAhHQJwth7RfF751fZQoaAZHQG8CMQNCqp9oB00KAWgIR0CcL0H0btJGdX2UKGgGR0BwGU4GUwBYaAdL/WgIR0CcMAscQyyldX2UKGgGR0Bwm6pKjBVNaAdL62gIR0CcMGWCEpRXdX2UKGgGR0BvFM76pHZsaAdL92gIR0CcMGaOxSpBdX2UKGgGR0A5izND+irUaAdL0GgIR0CcMJhA4XGfdX2UKGgGR0Bqxgtcv/R3aAdNQAFoCEdAnDEDdxhlUnV9lChoBkdAcHVrzXjEN2gHTQQBaAhHQJwxSz7di2F1fZQoaAZHQGMumZ/kNnZoB03oA2gIR0CcMbLDye7MdX2UKGgGR0BpRJoEjgQ6aAdNXgFoCEdAnDG/E87p3XV9lChoBkdAcPut52QnyGgHS+hoCEdAnDMM4YJmd3V9lChoBkdAbFbFERaouWgHS/1oCEdAnDMZmqYJFHV9lChoBkdAL2jrRjSXt2gHS81oCEdAnDM+tjkMkXV9lChoBkdAcM5AZbY9PmgHTS4BaAhHQJwzVJRO1v51fZQoaAZHQHF1ZuZThpBoB00JAWgIR0CcM9kCFK02dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 984, "n_steps": 512, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVJgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjHIvdWlvL2thbnQvaWZpLWFuc2F0dC11MDcvbW9qdGFiYWsvLmNvbmRhL2VudnMvcHkzMTEvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLhEMI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxyL3Vpby9rYW50L2lmaS1hbnNhdHQtdTA3L21vanRhYmFrLy5jb25kYS9lbnZzL3B5MzExL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVjAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEtDOlxBbmFjb25kYTNcZW52c1xweTMxMVxMaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLhEMI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBhoDYwMX19xdWFsbmFtZV9flGgOjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8qNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Windows-10-10.0.19045-SP0 10.0.19045", "Python": "3.11.4", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cpu", "GPU Enabled": "False", "Numpy": "1.25.1", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.26.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ebc4bd98c2c18172bb93ca6caef1aed52a8eb17cf42c224ca50970ebdc7633a0
|
3 |
+
size 147013
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x000002478ECF99E0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x000002478ECF9A80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x000002478ECF9B20>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x000002478ECF9BC0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x000002478ECF9C60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x000002478ECF9D00>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x000002478ECF9DA0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x000002478ECF9E40>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x000002478ECF9EE0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x000002478ECF9F80>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x000002478ECFA020>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x000002478ECFA0C0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x000002478ECFCB00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 2015232,
|
25 |
+
"_total_timesteps": 2000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1690277099698643669,
|
30 |
+
"learning_rate": 0.0002,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAANpslj1xyCm7XTCGvTUKODzW+Rg8QlIivQAAAAAAAIA/vdN3vk/dOD+xhzm+UumwvgXxnr2HDLU7AAAAAAAAAADGO4G+AdZvPhjqjD3tD3e+jF6MPJs3/zgAAAAAAAAAALoHUj4fabY89AHDvflbhbsTQ08+0/2AvQAAgD8AAIA/hv3QPmBYjz6T2gm+l6V4vk6xSD23Nay9AAAAAAAAAABmJp25SNmSusVZmLkRbes020IvO68VrzgAAIA/AACAP2CzBL5useU9/uExPWyET75NX5E6+gR2OgAAAAAAAAAAkyg8Pi+aID+rfM68rg6/vrlWTT0VqF+8AAAAAAAAAADq5G2+CEqDvKXjODrtkDY43vjjPd2BCLkAAIA/AACAPzMZXr0ukpU/5EaBvhB+Cr+yxWS9pePhvQAAAAAAAAAAmrAhvU4wej/SMc69ESnuvn+CPLyTStk7AAAAAAAAAAANa/c9e+DFupecjjrJgaW4JcTtuuI0kLkAAIA/AACAP8BGDz5zXEA/WBLQPXZwnL6bxtQ9iFDYvAAAAAAAAAAAE9lDPhKyhzwAlAS0zj3Rsin1ET4QFwc0AACAPwAAgD8aeDO9ycQdP/X9Zr2sssC+jlxqvCNZPj0AAAAAAAAAAEAhp71H3XM/NLMKvmx42746ur68/sZgvQAAAAAAAAAAWhW+Pa7vk7pgv0EzLdgfMGfW5rru5MizAACAPwAAgD/aKI29shNUP3alv7xpdNW+nGzwu7r5j7oAAAAAAAAAAABdzLwI/6k/vqKlvTPJ9754PlY8kn4dvQAAAAAAAAAAJr+mPZ9wrLsfq0g9kyMJvpxrAzs429e+AACAPwAAgD8NZVo+us0CveIEgDuMphe6wqRlvtoBrroAAIA/AACAP5OcPr7KX2I+5oGmPWc0VL565cK5JjOnPAAAAAAAAAAAM9cMPIQlpz9dWaU9XmADv03/kjxSm1M9AAAAAAAAAAAamHk+RcytPE7wjTozQA45TFxBPiZIurkAAIA/AACAP30Nib5250e8Ys0eu7xaAbk8WKY9ZlE5OgAAgD8AAIA/zcu9PAUEIT6mtw293pI6vh1v4Tz9n/u7AAAAAAAAAADNj5w8gtKEPh5AjL0yJYi+02uwvDWl/zwAAAAAAAAAAJrvwD0RN44/agnKPcLn676k1J094uMVvQAAAAAAAAAAGsMePWbumT/fqCM+YLHlvtgJKj3eym89AAAAAAAAAAAAOGQ9cmKfP8hGPz6e5cq+luC0PToFaT0AAAAAAAAAAICLEL4EJNQ+i9r8vZfqnL5eTkK9tv/7OwAAAAAAAAAAjp/JvgQ8gj3KNI88TWRNPEBksr6liWc9AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.007616000000000067,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVGQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGrwaBRQ792MAWyUS/GMAXSUR0Cb7mlF+d9VdX2UKGgGR0Bgm2Fg2IfsaAdN6ANoCEdAm+7uHerMknV9lChoBkdAcDSRISUTtmgHTQIBaAhHQJvvGqYJE6V1fZQoaAZHwDBEUBXCCSRoB0vxaAhHQJvvJNEgGKR1fZQoaAZHQGMZbWNFSbZoB03oA2gIR0Cb75A9mpVCdX2UKGgGR0AKl+1Bt1p1aAdLpmgIR0Cb7/Ta0x/NdX2UKGgGR0Bx7F0GNaQnaAdNKAFoCEdAm/GtTkyULXV9lChoBkdAcJuZha1Ti2gHTSYBaAhHQJvxxZvDP4V1fZQoaAZHQBAWSEDhcZ9oB0vIaAhHQJvyZnYg7o11fZQoaAZHwDEBRbbDdgxoB0upaAhHQJvzD2xptaZ1fZQoaAZHQHA8HARChOBoB0v7aAhHQJvz9rHlwLp1fZQoaAZHQHGLBYeT3ZhoB00yAWgIR0Cb9L84xUNsdX2UKGgGR8Ay7JgLJCBxaAdL22gIR0Cb95F9a2WqdX2UKGgGR0BweBDb8FY/aAdL42gIR0Cb96FAVwgldX2UKGgGR0BrsK8xsVL0aAdNHQFoCEdAm/fOgxrSE3V9lChoBkdAY9DByCFsYWgHTegDaAhHQJv33cEeQuF1fZQoaAZHQG6ndcB2fTVoB00BAWgIR0Cb995AyEcsdX2UKGgGR0BuELpzLfUGaAdNCgFoCEdAm/gJMtbs4XV9lChoBkdAcHhSDh99dGgHTQMBaAhHQJv4qLNwBHV1fZQoaAZHQG08JYDDCP9oB00aAWgIR0Cb+b77bcoIdX2UKGgGR0BBfeYMOPNnaAdL2GgIR0Cb+hWK/EfldX2UKGgGR0BgYUN+b3GoaAdN6ANoCEdAm/owpKBd2XV9lChoBkdAbz5gJkXk52gHS/toCEdAm/qlEuxrz3V9lChoBkdAY6hrt3OfNGgHTegDaAhHQJv61wjt5Ut1fZQoaAZHQGs19QGfPHFoB00HAWgIR0Cb+4doWYWtdX2UKGgGR0BwimgIyCWeaAdNEwFoCEdAm/vGPDHfdnV9lChoBkdAcRHEVnEl3WgHS+9oCEdAm/w3DFZPmHV9lChoBkdAbefSjxkNF2gHTQkBaAhHQJv8jIU8FIN1fZQoaAZHQGvbm0mdAgRoB00TAWgIR0Cb/MsgMc6vdX2UKGgGR0BuGtgtvn8saAdNDAFoCEdAm/0oYWLxZ3V9lChoBkdAbye+LWI42mgHTcMCaAhHQJv9SzIFNcp1fZQoaAZHQGxxYTK1XvJoB007AWgIR0Cb/ZELYwqRdX2UKGgGR0BADZWRzRx+aAdL22gIR0Cb/lh7mdRSdX2UKGgGR0Bwil6Rhc7haAdL+mgIR0Cb/odfsu3+dX2UKGgGR0Bs2xfF72L6aAdL+GgIR0Cb/wRXfZVXdX2UKGgGR0BvDLcTJyQxaAdL72gIR0CcAAzKcNH6dX2UKGgGR0BsIdJpWV/uaAdNHgFoCEdAnAANFWn0kHV9lChoBkdAYKECFsYVI2gHTegDaAhHQJwApR8+ial1fZQoaAZHQDfUiMYMvytoB0vOaAhHQJwCbJjlPrR1fZQoaAZHQG/9YR/ViF1oB0vxaAhHQJwDa12JSBN1fZQoaAZHQHChfLcKw6hoB0v3aAhHQJwDeXsw+MZ1fZQoaAZHQG2S6rWAf+1oB0v0aAhHQJwDhsHjZL91fZQoaAZHQHErQP7N0NloB0vmaAhHQJwEl5Rjz7N1fZQoaAZHQG1Am51/2CdoB00UAWgIR0CcBPDYAbQ1dX2UKGgGR0Bs5Hw5NoJzaAdNGAFoCEdAnAV7/82rGXV9lChoBkdAcA4UNrj5sWgHS+1oCEdAnByKFEiMYXV9lChoBkdAMYKagElme2gHS9ZoCEdAnBz91ZDArXV9lChoBkdAa1qjrRjSX2gHTQUBaAhHQJwdM2n889x1fZQoaAZHQG6z5s0pEx9oB003AWgIR0CcHaVhkRSQdX2UKGgGR0BHbO0TlDF7aAdL8mgIR0CcHbMr3CbddX2UKGgGR0BwzXua4MF2aAdNFQFoCEdAnB4Tmr8zh3V9lChoBkfAKHxBE8aGYmgHS9loCEdAnB4e6y0KJHV9lChoBkdAb2ES4e9zwWgHS+5oCEdAnB64Ia99MXV9lChoBkdAb3R1AZ88cWgHTRsBaAhHQJwe9RekYXR1fZQoaAZHQHF5HmV7hNxoB00JAWgIR0CcHwBTn7pFdX2UKGgGR0BwWqNZNfw7aAdL92gIR0CcH5hi9ZiedX2UKGgGR0BxfJIre67NaAdL7mgIR0CcIEKLbYbsdX2UKGgGR0Bt6nYlIEr5aAdNBAFoCEdAnCBvAGjbjHV9lChoBkdAbufOk+HJtGgHTaMCaAhHQJwhMFTvRZ51fZQoaAZHQHCaPiDM/yJoB00CAWgIR0CcIc/20zCUdX2UKGgGR0BwQtAdGRV7aAdNHwFoCEdAnCKiemNzbXV9lChoBkdAOrQU+LWI42gHS9JoCEdAnCQDW07bL3V9lChoBkdAcVWaufVZtGgHTRoBaAhHQJwkq9SMtK91fZQoaAZHQHEZbHyVfNRoB017AWgIR0CcJPuG9HtndX2UKGgGR0BvKvWFvhqCaAdNMQFoCEdAnCUu5WilBXV9lChoBkdAR75FocrAg2gHS9NoCEdAnCVIdIXj2nV9lChoBkdAbPjGEwnIAGgHS/poCEdAnCYSE+Pik3V9lChoBkdAa+jj0cwQDmgHTR4BaAhHQJwm1SaVlf91fZQoaAZHQHERLUkOZstoB0vyaAhHQJwnMA2hqTN1fZQoaAZHQDhvKzRhMJxoB0vPaAhHQJwnYcHWz4V1fZQoaAZHQG5GeOn2qT9oB00YAWgIR0CcJ6IMjNY9dX2UKGgGR0BuIPQdCE6DaAdL8GgIR0CcKF2MsH0LdX2UKGgGR0Bw4OKP4mCzaAdL7GgIR0CcKF4VARkFdX2UKGgGR0BtaNUKiO/+aAdL+mgIR0CcKGs5XEIgdX2UKGgGR0BvJM8La24NaAdNDgFoCEdAnCkOrhisn3V9lChoBkdAW9A50bLlm2gHTegDaAhHQJwp2GRFI/Z1fZQoaAZHQHFnZ26kIopoB0vuaAhHQJwp/CemNzd1fZQoaAZHQG8WGapgkTpoB00SAWgIR0CcKq2P1ct5dX2UKGgGR0Bw9DI2fkFOaAdNCgFoCEdAnCq4j0L+gnV9lChoBkdAcDVCiyprDmgHTQIBaAhHQJwrK9XcQAd1fZQoaAZHQHEy+eSSvDBoB00EAWgIR0CcK0vqC6H1dX2UKGgGR0BxC7/p+tr9aAdNLwFoCEdAnCxVu76HkHV9lChoBkdAbpXyyUs4DWgHTQYBaAhHQJws39XLeRB1fZQoaAZHQGuJSXMQmNRoB00MAWgIR0CcLPdZaFEidX2UKGgGR0BjSMan752yaAdN6ANoCEdAnC1dPHktE3V9lChoBkdAZ7JH4Glhw2gHTSgBaAhHQJwth7RfF751fZQoaAZHQG8CMQNCqp9oB00KAWgIR0CcL0H0btJGdX2UKGgGR0BwGU4GUwBYaAdL/WgIR0CcMAscQyyldX2UKGgGR0Bwm6pKjBVNaAdL62gIR0CcMGWCEpRXdX2UKGgGR0BvFM76pHZsaAdL92gIR0CcMGaOxSpBdX2UKGgGR0A5izND+irUaAdL0GgIR0CcMJhA4XGfdX2UKGgGR0Bqxgtcv/R3aAdNQAFoCEdAnDEDdxhlUnV9lChoBkdAcHVrzXjEN2gHTQQBaAhHQJwxSz7di2F1fZQoaAZHQGMumZ/kNnZoB03oA2gIR0CcMbLDye7MdX2UKGgGR0BpRJoEjgQ6aAdNXgFoCEdAnDG/E87p3XV9lChoBkdAcPut52QnyGgHS+hoCEdAnDMM4YJmd3V9lChoBkdAbFbFERaouWgHS/1oCEdAnDMZmqYJFHV9lChoBkdAL2jrRjSXt2gHS81oCEdAnDM+tjkMkXV9lChoBkdAcM5AZbY9PmgHTS4BaAhHQJwzVJRO1v51fZQoaAZHQHF1ZuZThpBoB00JAWgIR0CcM9kCFK02dWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 984,
|
55 |
+
"n_steps": 512,
|
56 |
+
"gamma": 0.99,
|
57 |
+
"gae_lambda": 0.95,
|
58 |
+
"ent_coef": 0.01,
|
59 |
+
"vf_coef": 0.5,
|
60 |
+
"max_grad_norm": 0.5,
|
61 |
+
"batch_size": 64,
|
62 |
+
"n_epochs": 8,
|
63 |
+
"clip_range": {
|
64 |
+
":type:": "<class 'function'>",
|
65 |
+
":serialized:": "gAWVJgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjHIvdWlvL2thbnQvaWZpLWFuc2F0dC11MDcvbW9qdGFiYWsvLmNvbmRhL2VudnMvcHkzMTEvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLhEMI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxyL3Vpby9rYW50L2lmaS1hbnNhdHQtdTA3L21vanRhYmFrLy5jb25kYS9lbnZzL3B5MzExL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
66 |
+
},
|
67 |
+
"clip_range_vf": null,
|
68 |
+
"normalize_advantage": true,
|
69 |
+
"target_kl": null,
|
70 |
+
"observation_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
72 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"dtype": "float32",
|
74 |
+
"bounded_below": "[ True True True True True True True True]",
|
75 |
+
"bounded_above": "[ True True True True True True True True]",
|
76 |
+
"_shape": [
|
77 |
+
8
|
78 |
+
],
|
79 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
80 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
81 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
82 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
83 |
+
"_np_random": null
|
84 |
+
},
|
85 |
+
"action_space": {
|
86 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
87 |
+
":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
88 |
+
"n": "4",
|
89 |
+
"start": "0",
|
90 |
+
"_shape": [],
|
91 |
+
"dtype": "int64",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 32,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVjAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEtDOlxBbmFjb25kYTNcZW52c1xweTMxMVxMaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLhEMI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBhoDYwMX19xdWFsbmFtZV9flGgOjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8qNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:481fcf1a3f1c689e1b19566ce86a9abb41d1af679206a8dbb9c02fb7ce004947
|
3 |
+
size 87545
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0643b492193b2bdcb2d92ce907c2a977ec1b86af39c246cee16f38f080245eaf
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Windows-10-10.0.19045-SP0 10.0.19045
|
2 |
+
- Python: 3.11.4
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cpu
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.25.1
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.26.2
|
replay.mp4
ADDED
Binary file (157 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 203.35921280000002, "std_reward": 106.25851866770898, "is_deterministic": false, "n_eval_episodes": 10, "eval_datetime": "2023-07-25T12:37:38.516728"}
|