Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +21 -21
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 201.69 +/- 101.51
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd1189867a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd118986840>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd1189868e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd118986980>", "_build": "<function ActorCriticPolicy._build at 0x7fd118986a20>", "forward": "<function ActorCriticPolicy.forward at 0x7fd118986ac0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd118986b60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd118986c00>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd118986ca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd118986d40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd118986de0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd118986e80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd118988280>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1500160, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690285932002956009, "learning_rate": 0.0002, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADPpZj2P3EY/r0EkPVllpb5H0AM8vpTwPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00010666666666669933, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHB2597WuoyMAWyUTRkCjAF0lEdAkJl32AXl83V9lChoBkdAUtw6r/82rGgHTQEBaAhHQJCZ/3L3bmF1fZQoaAZHQHBVwi7kGRpoB00VAWgIR0CQm2vphWo4dX2UKGgGR0Bv7x9b5dnkaAdNSAFoCEdAkJwbBbfP5nV9lChoBkdAZFu2jO9nLGgHTegDaAhHQJCfH0SRKYl1fZQoaAZHQHJzAW3z+WJoB01xAWgIR0CQn+xwAEMcdX2UKGgGR0Bw7E8uBczJaAdNKgFoCEdAkKF2AbyYonV9lChoBkdAcnpXlr/KhmgHTRABaAhHQJCiB2bG3nZ1fZQoaAZHQG4aBGQSzxBoB000AmgIR0CQoyouPFNtdX2UKGgGR0BvO4iTt9hJaAdNWQFoCEdAkKS9fCyhSXV9lChoBkdAbpg0NSZSemgHTS4BaAhHQJClXLgXMyJ1fZQoaAZHQHAhCIP9UCJoB00NAWgIR0CQpek6cRUWdX2UKGgGR0BufMWRA8jiaAdNLwFoCEdAkKdhmGucMHV9lChoBkdAcmNGFi8WbmgHTSsBaAhHQJCn/UUfxMF1fZQoaAZHQHBxMGLUCq9oB0v+aAhHQJCogXYUWVN1fZQoaAZHQHBAoegctGxoB00/AWgIR0CQqSj9n9NvdX2UKGgGR0BxuaBSUC7saAdNQAFoCEdAkKqvGMn7YXV9lChoBkdAckBp/wy6+WgHTcIBaAhHQJCrnfNzKcN1fZQoaAZHQGyz9/BnBcloB02aAWgIR0CQrVMHbAUMdX2UKGgGR0BtOgO+ZgG9aAdNUAFoCEdAkK4MhxHXmXV9lChoBkdAb2TeHBUJfWgHTTUBaAhHQJCuuA7Pppx1fZQoaAZHQHJVbx3FDOVoB01wAWgIR0CQsGV5KODKdX2UKGgGR0BVGc+7lJYlaAdN6ANoCEdAkLN1Au7HyXV9lChoBkdAcTTtdiUgS2gHTXIBaAhHQJC0PDfm9xp1fZQoaAZHQHBjuUhV2idoB01NAWgIR0CQtPWMju8cdX2UKGgGR0BvHM5wOvt/aAdNNAFoCEdAkLaBpYcNpnV9lChoBkdAcKAoRZlnRWgHTWYBaAhHQJC3S6Ae7tl1fZQoaAZHQHCizyBkI5ZoB009AWgIR0CQt/nG8274dX2UKGgGR0Btvi0a6z3RaAdNSwFoCEdAkLmlMRHww3V9lChoBkdAcAzI0IkZ8GgHTUkBaAhHQJC6Vx2jfvZ1fZQoaAZHQHExwPRRdhRoB00/AWgIR0CQuwQokRjCdX2UKGgGR0BIWhWPtD2KaAdL4mgIR0CQu3xKxs2vdX2UKGgGR0BCxveHi3ocaAdL1GgIR0CQvMSXMQmNdX2UKGgGR0BxyEJng5zYaAdNegFoCEdAkL2UB0ZFX3V9lChoBkdAbqNdO6/Zd2gHTSwBaAhHQJC+N/ViF0x1fZQoaAZHQG/RqifxtpFoB02hAWgIR0CQv/uvllshdX2UKGgGR0BwXKAskIHDaAdNIAFoCEdAkMCYbOu7pXV9lChoBkdAcG09RaX8fmgHTXwBaAhHQJDBaSPluFZ1fZQoaAZHQHGFNayKNyZoB01AAWgIR0CQwveOn2qUdX2UKGgGR0BtsUw5/9YPaAdNQQFoCEdAkMOmKEWZZ3V9lChoBkdAcTGcj7hvSGgHTREBaAhHQJDEPZXdTHd1fZQoaAZHQHCaBdhRZU1oB006AWgIR0CQxcy5qdpZdX2UKGgGR0BtnZzkp7TlaAdNWAFoCEdAkMaNuUD+znV9lChoBkdAcK712aDwpmgHTUMBaAhHQJDHQ/zJ6pp1fZQoaAZHQG+hbu+h4+toB00XAmgIR0CQyVaDPGADdX2UKGgGR0Bx8XRBu4wzaAdNMwFoCEdAkMn/fTCtR3V9lChoBkdAXIsdFOO802gHTegDaAhHQJDNFRP420l1fZQoaAZHQHLfR+rlvIhoB01JAWgIR0CQzcmP5pJxdX2UKGgGR0BxR6Dyvs7daAdNUQFoCEdAkM9sIZ62OXV9lChoBkdASWumDUVi4WgHS+VoCEdAkM/r1VYISnV9lChoBkdAb0fUx20Re2gHTREBaAhHQJDQg8B+4LF1fZQoaAZHQHFx6T4cm0FoB01JAWgIR0CQ0T4VRDTjdX2UKGgGR0BwSAGRmseXaAdNIQFoCEdAkNLNSEUTMHV9lChoBkdAbBSH4XXRPWgHTR8BaAhHQJDTbanJkoZ1fZQoaAZHQHLSSNCJGfBoB0vtaAhHQJDT8Tj/+851fZQoaAZHQEdzjjJdSl5oB0vyaAhHQJDUeZhKDkF1fZQoaAZHQHG4EipvP1NoB01CAWgIR0CQ1heeFtbcdX2UKGgGR0Bw/X3SKFZgaAdNuQFoCEdAkNcUMPSUknV9lChoBkdAcife1KGtZGgHTQQBaAhHQJDXpeZ5Rj11fZQoaAZHQHKCOee4Cp5oB01kAWgIR0CQ2VG5c1O1dX2UKGgGR0BwEP0Fr2xqaAdNBAFoCEdAkNndEw35vnV9lChoBkdAcAosGxD9fmgHTSYBaAhHQJDafncL0Bh1fZQoaAZHQG/G13ljmS1oB02CAWgIR0CQ3DzU7Sy/dX2UKGgGR0BSsUvboKUnaAdL+WgIR0CQ3MO45Lh8dX2UKGgGR0BuqGd3B55aaAdNYQFoCEdAkN2JBHCoCXV9lChoBkdAb/nDqnm7rmgHTWoBaAhHQJDfS6Zpi7V1fZQoaAZHQHBveyiVSoBoB00lAWgIR0CQ3+WsRxtIdX2UKGgGR0BxAIYvWYnfaAdNKAFoCEdAkOCDRplBhXV9lChoBkdAcE+3kPtlZ2gHTV0BaAhHQJDiFsO5J9R1fZQoaAZHQHB0PNRm9QJoB01sAWgIR0CQ4tyFwkxAdX2UKGgGR0Bv9Y08/2TQaAdNRwFoCEdAkOOQCCBf8nV9lChoBkdASV2I9C/oJWgHS9FoCEdAkOP/JJXhfnV9lChoBkdAcj1o9s7+1mgHTRwBaAhHQJDlfEXLvCx1fZQoaAZHQHEEyY1He8BoB03gAWgIR0CQ5ogRbr1NdX2UKGgGR0BxlBnrY5DJaAdNSAJoCEdAkOiq6STyKHV9lChoBkdAcsfoRZlnRWgHTTcBaAhHQJDpUxXXAdp1fZQoaAZHQHAoKtHQQcxoB00rAWgIR0CQ6fPmxMWXdX2UKGgGR0BxxdIYm9g4aAdNIwFoCEdAkOt8Emplz3V9lChoBkdAcFPme18b72gHTRgBaAhHQJDsIhr30wt1fZQoaAZHP+Llp48lolFoB0vXaAhHQJDsn2mHgxd1fZQoaAZHQHA+XY150KZoB01PAWgIR0CQ7Wd1MdtEdX2UKGgGR0BMZ0e2d/ayaAdLyWgIR0CQ7tiudPLxdX2UKGgGR0BvKpZ2ZApsaAdNJgFoCEdAkO957CzkZXV9lChoBkdAQlzbYbsF+2gHS+NoCEdAkO/xzzVc2XV9lChoBkdAblzA6dUbUGgHTWYBaAhHQJDxi3azu4R1fZQoaAZHQG3obtRekYZoB00cAWgIR0CQ8imV7hNudX2UKGgGR0A6bwPAfuCxaAdL4mgIR0CQ8qSB9TgmdX2UKGgGR0BWWCqlxffGaAdL3mgIR0CQ8xk/r0J4dX2UKGgGR0BwuVtoBaLXaAdNagFoCEdAkPTAn6VMVXV9lChoBkdAcg3yM1jy4GgHTT0BaAhHQJD1ehg3Lmp1fZQoaAZHQHAs+I68xsVoB03pAmgIR0CQ+CcjJMg2dX2UKGgGR0BtJEH8jzI4aAdNIAFoCEdAkPjOuq3mWHV9lChoBkdAcQ+1Bt1p02gHTT0BaAhHQJD5iAc1fmd1fZQoaAZHQHHcTsIE8q5oB00YAmgIR0CQ++zabnX/dX2UKGgGR0ByQp6t1ZDBaAdNGQFoCEdAkPyqw+t8u3V9lChoBkdAbrzKji4rjGgHTSgBaAhHQJD9dr56+nJ1fZQoaAZHQHBPtECvHLloB00sAWgIR0CQ/v0LMLWqdX2UKGgGR0By19lVcUudaAdNDQFoCEdAkP+JZB9kSXV9lChoBkdAb/qt4A0bcWgHTQoBaAhHQJEAFwT/Q0J1fZQoaAZHQHFyEipvP1NoB000AWgIR0CRALQr+YMOdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 5860, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVJgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjHIvdWlvL2thbnQvaWZpLWFuc2F0dC11MDcvbW9qdGFiYWsvLmNvbmRhL2VudnMvcHkzMTEvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLhEMI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxyL3Vpby9rYW50L2lmaS1hbnNhdHQtdTA3L21vanRhYmFrLy5jb25kYS9lbnZzL3B5MzExL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVJgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjHIvdWlvL2thbnQvaWZpLWFuc2F0dC11MDcvbW9qdGFiYWsvLmNvbmRhL2VudnMvcHkzMTEvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLhEMI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxyL3Vpby9rYW50L2lmaS1hbnNhdHQtdTA3L21vanRhYmFrLy5jb25kYS9lbnZzL3B5MzExL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Kjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-4.18.0-425.19.2.el8_7.x86_64-x86_64-with-glibc2.28 # 1 SMP Fri Mar 17 01:52:38 EDT 2023", "Python": "3.11.4", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.3", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0e4d89e7a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0e4d89e840>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0e4d89e8e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0e4d89e980>", "_build": "<function ActorCriticPolicy._build at 0x7f0e4d89ea20>", "forward": "<function ActorCriticPolicy.forward at 0x7f0e4d89eac0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0e4d89eb60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0e4d89ec00>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0e4d89eca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0e4d89ed40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0e4d89ede0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0e4d89ee80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0e4d893b00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2000896, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690287265585046074, "learning_rate": 0.0002, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADOhPjyPnju6PJrLuuR1HzdU1gy6r6uLtgAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGmEyULUkSMAWyUTTkBjAF0lEdAm0gDLSuyNXV9lChoBkdAcGMWcjJMg2gHTScBaAhHQJtKPp7kXDZ1fZQoaAZHQEfqtU4rBj5oB0vhaAhHQJtKtZntfHB1fZQoaAZHQEKgZML4N7VoB0vZaAhHQJtLKt1ZDAt1fZQoaAZHQHBz0tAcDKZoB00PAWgIR0CbS7bqhUR4dX2UKGgGR0A7u6BRQ79yaAdL7GgIR0CbTbw7kn1GdX2UKGgGR0Bym85sCT2WaAdNUQFoCEdAm05t0JWvKXV9lChoBkdANZBzFMqSYGgHS89oCEdAm07Zc9nscHV9lChoBkdAcAQ/rjYI0WgHTQcBaAhHQJtPYOf/WDp1fZQoaAZHQHGMp2IO6NFoB00MAWgIR0CbUXoE0SAZdX2UKGgGR0BFq12q1gIAaAdL0mgIR0CbUejesPrfdX2UKGgGR0BuQtR1oxpMaAdNLQFoCEdAm1KE7r9l3HV9lChoBkdAclwhH9WIXWgHTSkBaAhHQJtTHi97F851fZQoaAZHQHA+U1IiC8RoB009AWgIR0CbVVOz6ab4dX2UKGgGR0Bv/jIq9XcQaAdNLAFoCEdAm1Xvhhpg1HV9lChoBkdAa/jG0eEIxGgHTSIBaAhHQJtWh32VVxV1fZQoaAZHQG9vNvwVj7RoB00jAWgIR0CbWKjQiRnwdX2UKGgGR0Bjg1KK508vaAdN6ANoCEdAm1xIOtnwonV9lChoBkdAb4mwMYuTR2gHTUcBaAhHQJtc9L0z0pV1fZQoaAZHQE2NFd9lVcVoB0vjaAhHQJtdauJUHY91fZQoaAZHQHHhrVFx4ptoB00iAWgIR0CbXgBU70WedX2UKGgGR0BvU7rkbPyDaAdNEwFoCEdAm2Aaf4AS4HV9lChoBkdAcf+QpF1B+mgHTTYBaAhHQJtgvkhib2F1fZQoaAZHQG+4bRF7UodoB00lAWgIR0CbYVTYdyT7dX2UKGgGR0ByaXeMyad+aAdNNgFoCEdAm2OF1jiGWXV9lChoBkdAcChp2ll9SmgHTTMBaAhHQJtkJRwZOzp1fZQoaAZHQG6ZdtuUD+1oB00WAWgIR0CbZLdszl90dX2UKGgGR0BwDIm6XjU/aAdNJwFoCEdAm2VOlXRw63V9lChoBkdAclHJ40Mw12gHTU4BaAhHQJtnjItDlYF1fZQoaAZHQBaEwztTkyVoB0vXaAhHQJtn91IRRMx1fZQoaAZHQDUonNPgvUVoB0vraAhHQJtoa6jFhod1fZQoaAZHQEp4bNKRMexoB0veaAhHQJto3hP0qYt1fZQoaAZHQHDUM8La24NoB006AWgIR0Cba0Gp++dtdX2UKGgGR0BwALTH80k4aAdNQgFoCEdAm2vyyhSLqHV9lChoBkdAbwBFWn0kGGgHTSIBaAhHQJtslsxfv4N1fZQoaAZHQGQo3FDOTq1oB03oA2gIR0CbcEJo0ygxdX2UKGgGR0BgrAw482aVaAdN6ANoCEdAm3Ph//echHV9lChoBkdAcT/+fRNRFmgHTUABaAhHQJt2FeY2Kl51fZQoaAZHQGw8T8HfMwFoB01ZAWgIR0CbdsjYZl4DdX2UKGgGR0BvugyM1jy4aAdN9AFoCEdAm3fMZ5zHTHV9lChoBkdAcU2roW56MWgHTYMBaAhHQJt6PWBjFyd1fZQoaAZHQHFObBsQ/X5oB02NA2gIR0CbfackdFOPdX2UKGgGR0BdNwPAfuCxaAdN6ANoCEdAm4FArDqGDnV9lChoBkdAcLvIzWPLgWgHTYsBaAhHQJuCDWbwz+F1fZQoaAZHQHGfo6nzg/FoB00YAWgIR0Cbgpt1ZDArdX2UKGgGR0Bh8rTfBN21aAdN6ANoCEdAm4ZJFgDzRXV9lChoBkdAcPhVhCtzS2gHTUABaAhHQJuIgFJQLux1fZQoaAZHQGFvZlOGj9JoB03oA2gIR0CbjCHKwIMSdX2UKGgGR0ByX8Emplz2aAdNRgFoCEdAm4zK3y7PIHV9lChoBkdAbrITrVvuPWgHTUABaAhHQJuNbO0LMLZ1fZQoaAZHQG9vo7vG6wtoB02BAmgIR0CbkD18stkGdX2UKGgGR0BvBAF3Y+SsaAdNMAFoCEdAm5DacRUWEnV9lChoBkdAcb6jawljVmgHTVMBaAhHQJuRgGeMAFR1fZQoaAZHQGAdbwrlNlBoB03oA2gIR0CblR9sabWmdX2UKGgGR0Ay87T2FnIyaAdLymgIR0CblxOSW7e3dX2UKGgGR0BpdDpqynk1aAdN6ANoCEdAm5qnS4OMEXV9lChoBkdADnDO1OTJQ2gHS8loCEdAm5sODjBEa3V9lChoBkdAM8kxh2GIsWgHS75oCEdAm5tvFaSs83V9lChoBkdARF0wL3K0U2gHS89oCEdAm5vYRywOfHV9lChoBkdALemWt2cJ+mgHS+ZoCEdAm5xNA1Nxl3V9lChoBkdAcBl7MgU1ymgHTTIBaAhHQJuecHE/B311fZQoaAZHQGHfa7mMfihoB03oA2gIR0CbohQnx8UmdX2UKGgGR0BkLINVinYQaAdN6ANoCEdAm6WxWkrPMXV9lChoBkdAcjhy/9Hc12gHTXUBaAhHQJumdKtga3t1fZQoaAZHQHHm2XkYGdJoB02AAWgIR0CbpzimEXchdX2UKGgGR0BFM7gTAWSEaAdLwmgIR0CbqSIOYplSdX2UKGgGR0BGVq+ajN6gaAdL3GgIR0CbqZKwIMScdX2UKGgGR0BE0v3JxNqQaAdLxGgIR0CbqfdSVGCqdX2UKGgGR0BuW1cKPXCkaAdNMQFoCEdAm6qW3jMmnnV9lChoBkdAcMi9dNWU8mgHTTsBaAhHQJusxHQQcxV1fZQoaAZHQGLWB3iaRZFoB03oA2gIR0CbsExjJ+2FdX2UKGgGR0BkEK8zyjHoaAdN6ANoCEdAm7PaveP7vXV9lChoBkdAcRo9MK1G9mgHTZkBaAhHQJu0reEZiux1fZQoaAZHQFDxCw8nuzBoB0v5aAhHQJu1LqX4TK11fZQoaAZHQGRcFEy+HrRoB03oA2gIR0CbuLnaFmFrdX2UKGgGR0BwB9T3qRlpaAdNRAFoCEdAm7rr92ovSXV9lChoBkdAcRtd6cAimmgHTYcBaAhHQJu7skOZssR1fZQoaAZHQHA8hUvPC2toB00YAWgIR0CbvD2nsLOSdX2UKGgGR0Byk1Pl+3H8aAdNRAFoCEdAm75fr4WUKXV9lChoBkdAcFpo3aSLZWgHTToBaAhHQJu/AqDsdDJ1fZQoaAZHQHDrKTbFjutoB00OAWgIR0Cbv4zPrv9cdX2UKGgGR0BwpLRgJC0GaAdNIAFoCEdAm8AgOz6acHV9lChoBkdAZiOZTho/RmgHTegDaAhHQJvDvUExIrh1fZQoaAZHQHDQpm7J4jdoB01NAWgIR0Cbxe/3nIQwdX2UKGgGR0BmuzRIBikPaAdN6ANoCEdAm8lye2/i53V9lChoBkdAcuMadc0Lt2gHTe0CaAhHQJvK77xd6cB1fZQoaAZHQELq8wpON5toB0vUaAhHQJvM3jR2KVJ1fZQoaAZHQHCtI6nzg/FoB01yAWgIR0CbzZ3pfQa8dX2UKGgGR0BwTJ7tzCDVaAdNKgFoCEdAm841l05lv3V9lChoBkdAEV5LAYYR/WgHS8NoCEdAm86aD0163XV9lChoBkdAcQIXSBshxGgHTSABaAhHQJvQt9JBgNR1fZQoaAZHQGN1Vv/BFd9oB03oA2gIR0Cb1FUwSJ0odX2UKGgGR0Bxgjlmvnr6aAdNNgFoCEdAm9T4jrzGxXV9lChoBkdAcBqw7T2FnWgHTUMBaAhHQJvVnVawD/51fZQoaAZHQEdEf29L6DZoB0vlaAhHQJvXs+7lJYl1fZQoaAZHQGZVL433pOhoB03oA2gIR0Cb2bDSPU8WdX2UKGgGR0BurNUbT+efaAdNJAFoCEdAm9vPSYw7DHV9lChoBkdASuLZxrBTGmgHS/1oCEdAm9xSvovBanV9lChoBkdAcF8CnxaxHGgHTUwBaAhHQJvc/Ck43m51fZQoaAZHQHDfQNXo1UFoB01QAWgIR0Cb3zWOIZZTdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 15632, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVJgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjHIvdWlvL2thbnQvaWZpLWFuc2F0dC11MDcvbW9qdGFiYWsvLmNvbmRhL2VudnMvcHkzMTEvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLhEMI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxyL3Vpby9rYW50L2lmaS1hbnNhdHQtdTA3L21vanRhYmFrLy5jb25kYS9lbnZzL3B5MzExL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVJgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjHIvdWlvL2thbnQvaWZpLWFuc2F0dC11MDcvbW9qdGFiYWsvLmNvbmRhL2VudnMvcHkzMTEvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLhEMI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxyL3Vpby9rYW50L2lmaS1hbnNhdHQtdTA3L21vanRhYmFrLy5jb25kYS9lbnZzL3B5MzExL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Kjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-4.18.0-425.19.2.el8_7.x86_64-x86_64-with-glibc2.28 # 1 SMP Fri Mar 17 01:52:38 EDT 2023", "Python": "3.11.4", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.3", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1ffa2087747a7889ddf224443aac1deab62ea6a0b3558cf6169d3ee1b76530b
|
3 |
+
size 146540
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,34 +4,34 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0002,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -41,17 +41,17 @@
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"n_steps": 1024,
|
56 |
"gamma": 0.999,
|
57 |
"gae_lambda": 0.98,
|
@@ -59,7 +59,7 @@
|
|
59 |
"vf_coef": 0.5,
|
60 |
"max_grad_norm": 0.5,
|
61 |
"batch_size": 64,
|
62 |
-
"n_epochs":
|
63 |
"clip_range": {
|
64 |
":type:": "<class 'function'>",
|
65 |
":serialized:": "gAWVJgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjHIvdWlvL2thbnQvaWZpLWFuc2F0dC11MDcvbW9qdGFiYWsvLmNvbmRhL2VudnMvcHkzMTEvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLhEMI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxyL3Vpby9rYW50L2lmaS1hbnNhdHQtdTA3L21vanRhYmFrLy5jb25kYS9lbnZzL3B5MzExL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f0e4d89e7a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0e4d89e840>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0e4d89e8e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0e4d89e980>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f0e4d89ea20>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f0e4d89eac0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0e4d89eb60>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0e4d89ec00>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f0e4d89eca0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0e4d89ed40>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0e4d89ede0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0e4d89ee80>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f0e4d893b00>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 2000896,
|
25 |
+
"_total_timesteps": 2000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1690287265585046074,
|
30 |
"learning_rate": 0.0002,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADOhPjyPnju6PJrLuuR1HzdU1gy6r6uLtgAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.00044800000000000395,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVLgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGmEyULUkSMAWyUTTkBjAF0lEdAm0gDLSuyNXV9lChoBkdAcGMWcjJMg2gHTScBaAhHQJtKPp7kXDZ1fZQoaAZHQEfqtU4rBj5oB0vhaAhHQJtKtZntfHB1fZQoaAZHQEKgZML4N7VoB0vZaAhHQJtLKt1ZDAt1fZQoaAZHQHBz0tAcDKZoB00PAWgIR0CbS7bqhUR4dX2UKGgGR0A7u6BRQ79yaAdL7GgIR0CbTbw7kn1GdX2UKGgGR0Bym85sCT2WaAdNUQFoCEdAm05t0JWvKXV9lChoBkdANZBzFMqSYGgHS89oCEdAm07Zc9nscHV9lChoBkdAcAQ/rjYI0WgHTQcBaAhHQJtPYOf/WDp1fZQoaAZHQHGMp2IO6NFoB00MAWgIR0CbUXoE0SAZdX2UKGgGR0BFq12q1gIAaAdL0mgIR0CbUejesPrfdX2UKGgGR0BuQtR1oxpMaAdNLQFoCEdAm1KE7r9l3HV9lChoBkdAclwhH9WIXWgHTSkBaAhHQJtTHi97F851fZQoaAZHQHA+U1IiC8RoB009AWgIR0CbVVOz6ab4dX2UKGgGR0Bv/jIq9XcQaAdNLAFoCEdAm1Xvhhpg1HV9lChoBkdAa/jG0eEIxGgHTSIBaAhHQJtWh32VVxV1fZQoaAZHQG9vNvwVj7RoB00jAWgIR0CbWKjQiRnwdX2UKGgGR0Bjg1KK508vaAdN6ANoCEdAm1xIOtnwonV9lChoBkdAb4mwMYuTR2gHTUcBaAhHQJtc9L0z0pV1fZQoaAZHQE2NFd9lVcVoB0vjaAhHQJtdauJUHY91fZQoaAZHQHHhrVFx4ptoB00iAWgIR0CbXgBU70WedX2UKGgGR0BvU7rkbPyDaAdNEwFoCEdAm2Aaf4AS4HV9lChoBkdAcf+QpF1B+mgHTTYBaAhHQJtgvkhib2F1fZQoaAZHQG+4bRF7UodoB00lAWgIR0CbYVTYdyT7dX2UKGgGR0ByaXeMyad+aAdNNgFoCEdAm2OF1jiGWXV9lChoBkdAcChp2ll9SmgHTTMBaAhHQJtkJRwZOzp1fZQoaAZHQG6ZdtuUD+1oB00WAWgIR0CbZLdszl90dX2UKGgGR0BwDIm6XjU/aAdNJwFoCEdAm2VOlXRw63V9lChoBkdAclHJ40Mw12gHTU4BaAhHQJtnjItDlYF1fZQoaAZHQBaEwztTkyVoB0vXaAhHQJtn91IRRMx1fZQoaAZHQDUonNPgvUVoB0vraAhHQJtoa6jFhod1fZQoaAZHQEp4bNKRMexoB0veaAhHQJto3hP0qYt1fZQoaAZHQHDUM8La24NoB006AWgIR0Cba0Gp++dtdX2UKGgGR0BwALTH80k4aAdNQgFoCEdAm2vyyhSLqHV9lChoBkdAbwBFWn0kGGgHTSIBaAhHQJtslsxfv4N1fZQoaAZHQGQo3FDOTq1oB03oA2gIR0CbcEJo0ygxdX2UKGgGR0BgrAw482aVaAdN6ANoCEdAm3Ph//echHV9lChoBkdAcT/+fRNRFmgHTUABaAhHQJt2FeY2Kl51fZQoaAZHQGw8T8HfMwFoB01ZAWgIR0CbdsjYZl4DdX2UKGgGR0BvugyM1jy4aAdN9AFoCEdAm3fMZ5zHTHV9lChoBkdAcU2roW56MWgHTYMBaAhHQJt6PWBjFyd1fZQoaAZHQHFObBsQ/X5oB02NA2gIR0CbfackdFOPdX2UKGgGR0BdNwPAfuCxaAdN6ANoCEdAm4FArDqGDnV9lChoBkdAcLvIzWPLgWgHTYsBaAhHQJuCDWbwz+F1fZQoaAZHQHGfo6nzg/FoB00YAWgIR0Cbgpt1ZDArdX2UKGgGR0Bh8rTfBN21aAdN6ANoCEdAm4ZJFgDzRXV9lChoBkdAcPhVhCtzS2gHTUABaAhHQJuIgFJQLux1fZQoaAZHQGFvZlOGj9JoB03oA2gIR0CbjCHKwIMSdX2UKGgGR0ByX8Emplz2aAdNRgFoCEdAm4zK3y7PIHV9lChoBkdAbrITrVvuPWgHTUABaAhHQJuNbO0LMLZ1fZQoaAZHQG9vo7vG6wtoB02BAmgIR0CbkD18stkGdX2UKGgGR0BvBAF3Y+SsaAdNMAFoCEdAm5DacRUWEnV9lChoBkdAcb6jawljVmgHTVMBaAhHQJuRgGeMAFR1fZQoaAZHQGAdbwrlNlBoB03oA2gIR0CblR9sabWmdX2UKGgGR0Ay87T2FnIyaAdLymgIR0CblxOSW7e3dX2UKGgGR0BpdDpqynk1aAdN6ANoCEdAm5qnS4OMEXV9lChoBkdADnDO1OTJQ2gHS8loCEdAm5sODjBEa3V9lChoBkdAM8kxh2GIsWgHS75oCEdAm5tvFaSs83V9lChoBkdARF0wL3K0U2gHS89oCEdAm5vYRywOfHV9lChoBkdALemWt2cJ+mgHS+ZoCEdAm5xNA1Nxl3V9lChoBkdAcBl7MgU1ymgHTTIBaAhHQJuecHE/B311fZQoaAZHQGHfa7mMfihoB03oA2gIR0CbohQnx8UmdX2UKGgGR0BkLINVinYQaAdN6ANoCEdAm6WxWkrPMXV9lChoBkdAcjhy/9Hc12gHTXUBaAhHQJumdKtga3t1fZQoaAZHQHHm2XkYGdJoB02AAWgIR0CbpzimEXchdX2UKGgGR0BFM7gTAWSEaAdLwmgIR0CbqSIOYplSdX2UKGgGR0BGVq+ajN6gaAdL3GgIR0CbqZKwIMScdX2UKGgGR0BE0v3JxNqQaAdLxGgIR0CbqfdSVGCqdX2UKGgGR0BuW1cKPXCkaAdNMQFoCEdAm6qW3jMmnnV9lChoBkdAcMi9dNWU8mgHTTsBaAhHQJusxHQQcxV1fZQoaAZHQGLWB3iaRZFoB03oA2gIR0CbsExjJ+2FdX2UKGgGR0BkEK8zyjHoaAdN6ANoCEdAm7PaveP7vXV9lChoBkdAcRo9MK1G9mgHTZkBaAhHQJu0reEZiux1fZQoaAZHQFDxCw8nuzBoB0v5aAhHQJu1LqX4TK11fZQoaAZHQGRcFEy+HrRoB03oA2gIR0CbuLnaFmFrdX2UKGgGR0BwB9T3qRlpaAdNRAFoCEdAm7rr92ovSXV9lChoBkdAcRtd6cAimmgHTYcBaAhHQJu7skOZssR1fZQoaAZHQHA8hUvPC2toB00YAWgIR0CbvD2nsLOSdX2UKGgGR0Byk1Pl+3H8aAdNRAFoCEdAm75fr4WUKXV9lChoBkdAcFpo3aSLZWgHTToBaAhHQJu/AqDsdDJ1fZQoaAZHQHDrKTbFjutoB00OAWgIR0Cbv4zPrv9cdX2UKGgGR0BwpLRgJC0GaAdNIAFoCEdAm8AgOz6acHV9lChoBkdAZiOZTho/RmgHTegDaAhHQJvDvUExIrh1fZQoaAZHQHDQpm7J4jdoB01NAWgIR0Cbxe/3nIQwdX2UKGgGR0BmuzRIBikPaAdN6ANoCEdAm8lye2/i53V9lChoBkdAcuMadc0Lt2gHTe0CaAhHQJvK77xd6cB1fZQoaAZHQELq8wpON5toB0vUaAhHQJvM3jR2KVJ1fZQoaAZHQHCtI6nzg/FoB01yAWgIR0CbzZ3pfQa8dX2UKGgGR0BwTJ7tzCDVaAdNKgFoCEdAm841l05lv3V9lChoBkdAEV5LAYYR/WgHS8NoCEdAm86aD0163XV9lChoBkdAcQIXSBshxGgHTSABaAhHQJvQt9JBgNR1fZQoaAZHQGN1Vv/BFd9oB03oA2gIR0Cb1FUwSJ0odX2UKGgGR0Bxgjlmvnr6aAdNNgFoCEdAm9T4jrzGxXV9lChoBkdAcBqw7T2FnWgHTUMBaAhHQJvVnVawD/51fZQoaAZHQEdEf29L6DZoB0vlaAhHQJvXs+7lJYl1fZQoaAZHQGZVL433pOhoB03oA2gIR0Cb2bDSPU8WdX2UKGgGR0BurNUbT+efaAdNJAFoCEdAm9vPSYw7DHV9lChoBkdASuLZxrBTGmgHS/1oCEdAm9xSvovBanV9lChoBkdAcF8CnxaxHGgHTUwBaAhHQJvc/Ck43m51fZQoaAZHQHDfQNXo1UFoB01QAWgIR0Cb3zWOIZZTdWUu"
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 15632,
|
55 |
"n_steps": 1024,
|
56 |
"gamma": 0.999,
|
57 |
"gae_lambda": 0.98,
|
|
|
59 |
"vf_coef": 0.5,
|
60 |
"max_grad_norm": 0.5,
|
61 |
"batch_size": 64,
|
62 |
+
"n_epochs": 8,
|
63 |
"clip_range": {
|
64 |
":type:": "<class 'function'>",
|
65 |
":serialized:": "gAWVJgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjHIvdWlvL2thbnQvaWZpLWFuc2F0dC11MDcvbW9qdGFiYWsvLmNvbmRhL2VudnMvcHkzMTEvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5RLhEMI+IAA2A8SiAqUQwCUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxyL3Vpby9rYW50L2lmaS1hbnNhdHQtdTA3L21vanRhYmFrLy5jb25kYS9lbnZzL3B5MzExL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYaA2MDF9fcXVhbG5hbWVfX5RoDowPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 88057
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe5dd709dc815e93d6502fb36e9b7c4b8eaee2789424da13c5d2ba85c2e6e7a4
|
3 |
size 88057
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43329
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ef7065b23164f310e4e60c0390cf215b3eb9b9dcc7ee2e49ae070d9e5494b11
|
3 |
size 43329
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 201.68591199999997, "std_reward": 101.50711639176566, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-25T14:44:41.655713"}
|