--- license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.87 --- # ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5243 - Accuracy: 0.87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7406 | 1.0 | 56 | 1.0012 | 0.66 | | 0.3306 | 1.99 | 112 | 0.4705 | 0.83 | | 0.2461 | 2.99 | 168 | 0.5012 | 0.83 | | 0.0756 | 4.0 | 225 | 0.5697 | 0.84 | | 0.1149 | 5.0 | 281 | 0.5627 | 0.87 | | 0.0012 | 5.99 | 337 | 0.6342 | 0.84 | | 0.0007 | 6.99 | 393 | 0.4624 | 0.89 | | 0.0005 | 8.0 | 450 | 0.6121 | 0.87 | | 0.0275 | 9.0 | 506 | 0.5096 | 0.87 | | 0.0003 | 9.96 | 560 | 0.5243 | 0.87 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.0 - Tokenizers 0.13.3