ppo-LunarLander-v2 / config.json
Ester Molinari
Upload PPO LunarLander-v2 trained agent
babec74
raw
history blame
13.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a63ac2edab0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a63ac2edb40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a63ac2edbd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a63ac2edc60>", "_build": "<function ActorCriticPolicy._build at 0x7a63ac2edcf0>", "forward": "<function ActorCriticPolicy.forward at 0x7a63ac2edd80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a63ac2ede10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a63ac2edea0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a63ac2edf30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a63ac2edfc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a63ac2ee050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a63ac2ee0e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a63ac2e7b00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691397309659154182, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOs6rzPby28VspiPXMpiD1Frnc7KXWpPAAAgD8AAIA/BjxpPpbZZz024lq+qYofvryphjzXHxW9AAAAAAAAAADauQ6+xUa/PPuWVD4h6Ri+GDyqvJtG6LsAAAAAAAAAABoiFr4FWvK7pjeEuoIiULgRCVE9VlWmOQAAgD8AAIA/wHS1vXuyrrqeMJA5WZ+KNExCZrpNB6W4AAAAAAAAgD+AknG9F0IIPIdVOj4GbwS+wE5QPKohjzwAAAAAAAAAAOaWer3TSXg/6x7avecKA7+YAEC9l5GRvAAAAAAAAAAAUyqsPrh8nz6Wm8a916OhvofXBD53iJG9AAAAAAAAAACa0cs8+1/rPSCLfj1LQTm++5MQPNXIVzwAAAAAAAAAAKbi9r2Bx6U9VecvPlAOP77me7W8oUdIPQAAAAAAAAAAAGJZPV/Ssz86kTs/nZryvV4HoLxOWW49AAAAAAAAAABAXJy9XBsSutgIR7M79Wyug3WZuo+CxDMAAAAAAACAP0BhDD45ado+I79UvcasvL5vdJs9OAN9vQAAAAAAAAAAeNaWvnkd6T7dXOI9uT+MvtMmwb0AEk48AAAAAAAAAAAAfsA9EhKZPwja2T4fiCa/kfXePe1lTj4AAAAAAAAAADNjB75kwi0+C0QaPlIpfr4lRR87r5qHvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV+QsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG9u4oRZlnSMAWyUS8yMAXSUR0CiemVsLv1EdX2UKGgGR0BtOhTZQHiWaAdL5mgIR0CieoWf9P1tdX2UKGgGR0BuScEovzvraAdL/GgIR0CieosPatcOdX2UKGgGR0ByIaYKIBRyaAdL1WgIR0CieruAI6bOdX2UKGgGR0Bw4ZElVtGeaAdL3WgIR0CifR5ggHNYdX2UKGgGR0BxbCC+UQkHaAdLxGgIR0CifUmgSOBEdX2UKGgGR0BzVzdgv115aAdL+2gIR0CifcGozeoDdX2UKGgGR0Buv9Z1V5ryaAdL0WgIR0CifeVtO2y+dX2UKGgGR0Bx8uqHXVbzaAdL6GgIR0CifeuYIBzWdX2UKGgGR0ByHuIvalDXaAdL/GgIR0CiffMkIHC5dX2UKGgGR0Bu0cHpr1ujaAdL02gIR0CifhPo/zJ7dX2UKGgGR0Bw8awUxmCiaAdNDgFoCEdAon4eqR2bG3V9lChoBkdAbd/ULDye7WgHS+doCEdAon5HEQ5FPXV9lChoBkdAcT7pJf6XSmgHTSQBaAhHQKJ+kHMUypJ1fZQoaAZHQHHQLpmmLtNoB0vIaAhHQKJ+n3j+7191fZQoaAZHQHL7c8cMmWtoB0v/aAhHQKJ+sQV9F4N1fZQoaAZHQG3hb3PAwf1oB0vbaAhHQKJ+ymhufmN1fZQoaAZHQHI/XZ5AyEdoB00YAWgIR0Cifv1TBInSdX2UKGgGR0Bwn9s2vStvaAdL42gIR0CifvwC8vmHdX2UKGgGR0Bu6a4UeuFIaAdNAAFoCEdAon+Dghr303V9lChoBkdAcjUtDlYEGWgHS79oCEdAooBxvrGBF3V9lChoBkdAcGTDvE0iyWgHS+BoCEdAooC1NYbKinV9lChoBkdAcXa6z3RG+mgHS+doCEdAooC42Q4jr3V9lChoBkdAcWP8PnSv1WgHS+loCEdAooFEp5NXYHV9lChoBkdAcLZdv863iWgHS8BoCEdAooFi3kPtlnV9lChoBkdAcAE1jiGWU2gHS+toCEdAooGOHN5dGHV9lChoBkdAcMTcpsoDxWgHS/poCEdAooGbrAxi5XV9lChoBkdAcagYgaFVUGgHS/RoCEdAooGqdQO4G3V9lChoBkdAbXS2UjcEeWgHS9doCEdAooHZhc7henV9lChoBkdAcLY8ujASF2gHS9RoCEdAooIisXBP9HV9lChoBkdAcZ4jUutfX2gHTSsBaAhHQKKCXqynk1d1fZQoaAZHQG7rmFJxvNxoB0vHaAhHQKKCkO0b9611fZQoaAZHQHHLEulGgBdoB00OAWgIR0CigsoLofSydX2UKGgGR0ByBHP4VRDUaAdNIQFoCEdAooLaCFsYVXV9lChoBkdAcYfszl90BGgHTRsBaAhHQKKDMVsUIs11fZQoaAZHQGzhllTWGypoB0vUaAhHQKKDzY+Sr5t1fZQoaAZHQG5fSvTw2EVoB0v4aAhHQKKEwI6bONZ1fZQoaAZHQHFGQtFrl/9oB0vQaAhHQKKEwOgg5ip1fZQoaAZHQHMd4ku6ErZoB0v9aAhHQKKE1DXOGCZ1fZQoaAZHQHDd0JjUd7xoB0vqaAhHQKKFXH3Dej51fZQoaAZHQHGZMrVe8f5oB0vmaAhHQKKFaCiAUcp1fZQoaAZHQHGYlmjCYTloB0v4aAhHQKKF75WzWwx1fZQoaAZHQG2LDesPrfNoB00JAWgIR0CihfUUfxMGdX2UKGgGR0BxMS9eyAx0aAdL62gIR0CihgkQGwA3dX2UKGgGR0ByNpQemvW6aAdNJgFoCEdAooYi8WbgCXV9lChoBkdAcToRkVeruWgHS+JoCEdAooZWAoXsPnV9lChoBkdAbXN3225QQGgHS9loCEdAooZqXyAhCHV9lChoBkdAb1cFcpsoD2gHS+doCEdAooaqHsTnJXV9lChoBkdAck1V9Wp6yGgHTQcBaAhHQKKGreQ+2Vp1fZQoaAZHQHIP3YxtYSxoB0vtaAhHQKKHDkuHvc91fZQoaAZHQHFnkDuBtk5oB0vTaAhHQKKHOl7dBSl1fZQoaAZHQHBgpKWcBltoB0vlaAhHQKKIRzMibDx1fZQoaAZHQHGShCtzS1FoB0vQaAhHQKKIgNd7fHh1fZQoaAZHQHJnQvcrRShoB0v5aAhHQKKInBoEjgR1fZQoaAZHQHCc35BTn7poB0v+aAhHQKKIy1jy4F11fZQoaAZHQHEI/VAiV0NoB0vNaAhHQKKJBGcWj451fZQoaAZHQG8kizC1qnFoB0vfaAhHQKKJUpeeFtd1fZQoaAZHQHEhreMyaeBoB0vaaAhHQKKJaWvbGm11fZQoaAZHQHII5t3wCr9oB00hAWgIR0Ciier2HtWudX2UKGgGR0Bx1VaiblRxaAdL1GgIR0Ciifqy4Wk8dX2UKGgGR0Bw1lP420iRaAdNAwFoCEdAoooH84xUN3V9lChoBkdAcO/M10knkWgHS+1oCEdAoopaE384xXV9lChoBkdAcEMxYaHbh2gHTQoBaAhHQKKKcPNmlIp1fZQoaAZHQHAb+PBBRhtoB00JAWgIR0CiioJAUtZndX2UKGgGR0BwSx20Re1KaAdL2WgIR0CiiqwKSgXedX2UKGgGR0BwuA7FKkEcaAdL4GgIR0Cii9eaKDTSdX2UKGgGR0Bv4UjxCpm3aAdL1WgIR0CijClCCz1LdX2UKGgGR0BwzG+6Ae7uaAdL6WgIR0CijFuQhfShdX2UKGgGR0Bv4esPrfLtaAdL4mgIR0CijPpxeb/fdX2UKGgGR0Bwb3T1CgK4aAdL5mgIR0CijSbihnJ1dX2UKGgGR0ByLSm3vx6OaAdNCwFoCEdAoo1fgJkXlHV9lChoBkdAc0BbdrO7hGgHS9VoCEdAoo1fX5FgD3V9lChoBkdAbV6cDKYAsGgHS99oCEdAoo2YWznienV9lChoBkdAcQDP0I1LrWgHS+BoCEdAoo2pYmsvI3V9lChoBkdAcSNeIl+mWWgHS9RoCEdAoo3QicG1QnV9lChoBkdAYgKtDlYEGWgHTegDaAhHQKKN/ICEHt51fZQoaAZHQHBisma6ST1oB0vlaAhHQKKObG7z06J1fZQoaAZHQHALni704BFoB00FAWgIR0CijruS4e90dX2UKGgGR0By5uAz544ZaAdNIwFoCEdAoo8jiCJ40XV9lChoBkdAcCClsguAZ2gHS+FoCEdAoo+Z95QgtHV9lChoBkdAciDy2QXAM2gHS91oCEdAoo/ezv7WNHV9lChoBkdAcMQaG5+Yt2gHTdQBaAhHQKKQN7x/d691fZQoaAZHQG3INAkcCHRoB0vMaAhHQKKQx3sXzlN1fZQoaAZHQHJdrdFfAsVoB00YAWgIR0CikSEgOjIrdX2UKGgGR0BxIJwMpgCwaAdL+WgIR0CikTY0uUUxdX2UKGgGR0Bw204EOiFkaAdL4GgIR0CikWHH/95ydX2UKGgGR0BxsaLn9vS/aAdL+2gIR0CikW0gB91EdX2UKGgGR0BxetahYeT3aAdNFgFoCEdAopLAhje9BnV9lChoBkdAcUD14Pf8/GgHTQ8BaAhHQKKSzjriVB51fZQoaAZHQHAoeG0u14RoB0v0aAhHQKKTITewcHZ1fZQoaAZHQHGWB4Uvf0poB006AWgIR0Cik0E5QxetdX2UKGgGR0BwfLKcNH6NaAdL6GgIR0Cik0/wiJO4dX2UKGgGR0BueoVoHs1LaAdL1mgIR0Cik4AOavzOdX2UKGgGR0BxXxxuKoAGaAdNIgFoCEdAopONPepGWnV9lChoBkdAblQdrftQbmgHS95oCEdAopQ557gKnnV9lChoBkdAb0arnTy8SWgHS99oCEdAopSJgy/KyXV9lChoBkdAcDI4lyBClmgHS8JoCEdAopT6lenhsXV9lChoBkdAcYiIWP91l2gHS9doCEdAopX1wo9cKXV9lChoBkdAbX/HR1HOKWgHS+xoCEdAopZg/oq0+nV9lChoBkdAcOpiFj/dZmgHS+loCEdAopa1P3ztkXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 390, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}