complete the model package
Browse files- .gitattributes +1 -0
- README.md +103 -0
- configs/evaluate.json +92 -0
- configs/inference.json +131 -0
- configs/logging.conf +21 -0
- configs/metadata.json +79 -0
- configs/multi_gpu_train.json +36 -0
- configs/train.json +335 -0
- docs/README.md +96 -0
- docs/license.txt +49 -0
- models/model.pt +3 -0
- models/model.ts +3 -0
- scripts/prepare_datalist.py +73 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
models/model.ts filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- monai
|
4 |
+
- medical
|
5 |
+
library_name: monai
|
6 |
+
license: unknown
|
7 |
+
---
|
8 |
+
# Model Overview
|
9 |
+
A pre-trained model for volumetric (3D) segmentation of brain tumor subregions from multimodal MRIs based on BraTS 2018 data. The whole pipeline is modified from [clara_pt_brain_mri_segmentation](https://catalog.ngc.nvidia.com/orgs/nvidia/teams/med/models/clara_pt_brain_mri_segmentation).
|
10 |
+
|
11 |
+
## Workflow
|
12 |
+
|
13 |
+
The model is trained to segment 3 nested subregions of primary brain tumors (gliomas): the "enhancing tumor" (ET), the "tumor core" (TC), the "whole tumor" (WT) based on 4 aligned input MRI scans (T1c, T1, T2, FLAIR).
|
14 |
+
- The ET is described by areas that show hyper intensity in T1c when compared to T1, but also when compared to "healthy" white matter in T1c.
|
15 |
+
- The TC describes the bulk of the tumor, which is what is typically resected. The TC entails the ET, as well as the necrotic (fluid-filled) and the non-enhancing (solid) parts of the tumor.
|
16 |
+
- The WT describes the complete extent of the disease, as it entails the TC and the peritumoral edema (ED), which is typically depicted by hyper-intense signal in FLAIR.
|
17 |
+
|
18 |
+
## Data
|
19 |
+
|
20 |
+
The training data is from the [Multimodal Brain Tumor Segmentation Challenge (BraTS) 2018](https://www.med.upenn.edu/sbia/brats2018/data.html).
|
21 |
+
|
22 |
+
- Target: 3 tumor subregions
|
23 |
+
- Task: Segmentation
|
24 |
+
- Modality: MRI
|
25 |
+
- Size: 285 3D volumes (4 channels each)
|
26 |
+
|
27 |
+
The provided labelled data was partitioned, based on our own split, into training (200 studies), validation (42 studies) and testing (43 studies) datasets.
|
28 |
+
|
29 |
+
Please run `scripts/prepare_datalist.py` to produce the data list. The command is like:
|
30 |
+
|
31 |
+
```
|
32 |
+
python scripts/prepare_datalist.py --path your-brats18-dataset-path
|
33 |
+
```
|
34 |
+
|
35 |
+
## Training configuration
|
36 |
+
|
37 |
+
This model utilized a similar approach described in 3D MRI brain tumor segmentation
|
38 |
+
using autoencoder regularization, which was a winning method in BraTS2018 [1]. The training was performed with the following:
|
39 |
+
|
40 |
+
- GPU: At least 16GB of GPU memory.
|
41 |
+
- Actual Model Input: 224 x 224 x 144
|
42 |
+
- AMP: True
|
43 |
+
- Optimizer: Adam
|
44 |
+
- Learning Rate: 1e-4
|
45 |
+
- Loss: DiceLoss
|
46 |
+
|
47 |
+
## Input
|
48 |
+
|
49 |
+
Input: 4 channel MRI (4 aligned MRIs T1c, T1, T2, FLAIR at 1x1x1 mm)
|
50 |
+
|
51 |
+
1. Normalizing to unit std with zero mean
|
52 |
+
2. Randomly cropping to (224, 224, 144)
|
53 |
+
3. Randomly spatial flipping
|
54 |
+
4. Randomly scaling and shifting intensity of the volume
|
55 |
+
|
56 |
+
## Output
|
57 |
+
|
58 |
+
Output: 3 channels
|
59 |
+
- Label 0: TC tumor subregion
|
60 |
+
- Label 1: WT tumor subregion
|
61 |
+
- Label 2: ET tumor subregion
|
62 |
+
|
63 |
+
## Model Performance
|
64 |
+
|
65 |
+
The achieved Dice scores on the validation data are:
|
66 |
+
- Tumor core (TC): 0.8559
|
67 |
+
- Whole tumor (WT): 0.9026
|
68 |
+
- Enhancing tumor (ET): 0.7905
|
69 |
+
- Average: 0.8518
|
70 |
+
|
71 |
+
## commands example
|
72 |
+
|
73 |
+
Execute training:
|
74 |
+
|
75 |
+
```
|
76 |
+
python -m monai.bundle run training --meta_file configs/metadata.json --config_file configs/train.json --logging_file configs/logging.conf
|
77 |
+
```
|
78 |
+
|
79 |
+
Override the `train` config to execute multi-GPU training:
|
80 |
+
|
81 |
+
```
|
82 |
+
torchrun --standalone --nnodes=1 --nproc_per_node=8 -m monai.bundle run training --meta_file configs/metadata.json --config_file "['configs/train.json','configs/multi_gpu_train.json']" --logging_file configs/logging.conf
|
83 |
+
```
|
84 |
+
|
85 |
+
Override the `train` config to execute evaluation with the trained model:
|
86 |
+
|
87 |
+
```
|
88 |
+
python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file "['configs/train.json','configs/evaluate.json']" --logging_file configs/logging.conf
|
89 |
+
```
|
90 |
+
|
91 |
+
Execute inference:
|
92 |
+
|
93 |
+
```
|
94 |
+
python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file configs/inference.json --logging_file configs/logging.conf
|
95 |
+
```
|
96 |
+
|
97 |
+
# Disclaimer
|
98 |
+
|
99 |
+
This is an example, not to be used for diagnostic purposes.
|
100 |
+
|
101 |
+
# References
|
102 |
+
|
103 |
+
[1] Myronenko, Andriy. "3D MRI brain tumor segmentation using autoencoder regularization." International MICCAI Brainlesion Workshop. Springer, Cham, 2018. https://arxiv.org/abs/1810.11654.
|
configs/evaluate.json
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"validate#postprocessing": {
|
3 |
+
"_target_": "Compose",
|
4 |
+
"transforms": [
|
5 |
+
{
|
6 |
+
"_target_": "Activationsd",
|
7 |
+
"keys": "pred",
|
8 |
+
"sigmoid": true
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"_target_": "Invertd",
|
12 |
+
"keys": "pred",
|
13 |
+
"transform": "@validate#preprocessing",
|
14 |
+
"orig_keys": "image",
|
15 |
+
"meta_keys": "pred_meta_dict",
|
16 |
+
"nearest_interp": false,
|
17 |
+
"to_tensor": true,
|
18 |
+
"device": "@validate#evaluator#device"
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"_target_": "AsDiscreted",
|
22 |
+
"keys": "pred",
|
23 |
+
"threshold": 0.5
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"_target_": "SplitChanneld",
|
27 |
+
"keys": [
|
28 |
+
"pred",
|
29 |
+
"label"
|
30 |
+
],
|
31 |
+
"output_postfixes": [
|
32 |
+
"tc",
|
33 |
+
"wt",
|
34 |
+
"et"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"_target_": "CopyItemsd",
|
39 |
+
"keys": "pred",
|
40 |
+
"names": "pred_combined",
|
41 |
+
"times": 1
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"_target_": "Lambdad",
|
45 |
+
"keys": "pred_combined",
|
46 |
+
"func": "$lambda x: torch.where(x[[2]] > 0, 4, torch.where(x[[0]] > 0, 1, torch.where(x[[1]] > 0, 2, 0)))"
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"_target_": "SaveImaged",
|
50 |
+
"keys": "pred_combined",
|
51 |
+
"meta_keys": "pred_meta_dict",
|
52 |
+
"output_dir": "@output_dir",
|
53 |
+
"output_postfix": "seg",
|
54 |
+
"output_dtype": "uint8",
|
55 |
+
"resample": false,
|
56 |
+
"squeeze_end_dims": true
|
57 |
+
}
|
58 |
+
]
|
59 |
+
},
|
60 |
+
"validate#handlers": [
|
61 |
+
{
|
62 |
+
"_target_": "CheckpointLoader",
|
63 |
+
"load_path": "$@ckpt_dir + '/model.pt'",
|
64 |
+
"load_dict": {
|
65 |
+
"model": "@network"
|
66 |
+
}
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"_target_": "StatsHandler",
|
70 |
+
"iteration_log": false
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"_target_": "MetricsSaver",
|
74 |
+
"save_dir": "@output_dir",
|
75 |
+
"metrics": [
|
76 |
+
"val_mean_dice",
|
77 |
+
"val_mean_dice_tc",
|
78 |
+
"val_mean_dice_wt",
|
79 |
+
"val_mean_dice_et"
|
80 |
+
],
|
81 |
+
"metric_details": [
|
82 |
+
"val_mean_dice"
|
83 |
+
],
|
84 |
+
"batch_transform": "$monai.handlers.from_engine(['image_meta_dict'])",
|
85 |
+
"summary_ops": "*"
|
86 |
+
}
|
87 |
+
],
|
88 |
+
"evaluating": [
|
89 |
+
"$setattr(torch.backends.cudnn, 'benchmark', True)",
|
90 |
+
"$@validate#evaluator.run()"
|
91 |
+
]
|
92 |
+
}
|
configs/inference.json
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"imports": [
|
3 |
+
"$import glob",
|
4 |
+
"$import os"
|
5 |
+
],
|
6 |
+
"bundle_root": "/workspace/brats_mri_segmentation",
|
7 |
+
"ckpt_dir": "$@bundle_root + '/models'",
|
8 |
+
"output_dir": "$@bundle_root + '/eval'",
|
9 |
+
"data_list_file_path": "$@bundle_root + '/configs/datalist.json'",
|
10 |
+
"data_file_base_dir": "/workspace/data/medical/brats2018challenge",
|
11 |
+
"test_datalist": "$monai.data.load_decathlon_datalist(@data_list_file_path, data_list_key='testing', base_dir=@data_file_base_dir)",
|
12 |
+
"device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
|
13 |
+
"amp": true,
|
14 |
+
"network_def": {
|
15 |
+
"_target_": "SegResNet",
|
16 |
+
"blocks_down": [
|
17 |
+
1,
|
18 |
+
2,
|
19 |
+
2,
|
20 |
+
4
|
21 |
+
],
|
22 |
+
"blocks_up": [
|
23 |
+
1,
|
24 |
+
1,
|
25 |
+
1
|
26 |
+
],
|
27 |
+
"init_filters": 16,
|
28 |
+
"in_channels": 4,
|
29 |
+
"out_channels": 3,
|
30 |
+
"dropout_prob": 0.2
|
31 |
+
},
|
32 |
+
"network": "$@network_def.to(@device)",
|
33 |
+
"preprocessing": {
|
34 |
+
"_target_": "Compose",
|
35 |
+
"transforms": [
|
36 |
+
{
|
37 |
+
"_target_": "LoadImaged",
|
38 |
+
"keys": "image"
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"_target_": "NormalizeIntensityd",
|
42 |
+
"keys": "image",
|
43 |
+
"nonzero": true,
|
44 |
+
"channel_wise": true
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"_target_": "ToTensord",
|
48 |
+
"keys": "image"
|
49 |
+
}
|
50 |
+
]
|
51 |
+
},
|
52 |
+
"dataset": {
|
53 |
+
"_target_": "Dataset",
|
54 |
+
"data": "@test_datalist",
|
55 |
+
"transform": "@preprocessing"
|
56 |
+
},
|
57 |
+
"dataloader": {
|
58 |
+
"_target_": "DataLoader",
|
59 |
+
"dataset": "@dataset",
|
60 |
+
"batch_size": 1,
|
61 |
+
"shuffle": true,
|
62 |
+
"num_workers": 4
|
63 |
+
},
|
64 |
+
"inferer": {
|
65 |
+
"_target_": "SlidingWindowInferer",
|
66 |
+
"roi_size": [
|
67 |
+
240,
|
68 |
+
240,
|
69 |
+
160
|
70 |
+
],
|
71 |
+
"sw_batch_size": 1,
|
72 |
+
"overlap": 0.5
|
73 |
+
},
|
74 |
+
"postprocessing": {
|
75 |
+
"_target_": "Compose",
|
76 |
+
"transforms": [
|
77 |
+
{
|
78 |
+
"_target_": "Activationsd",
|
79 |
+
"keys": "pred",
|
80 |
+
"sigmoid": true
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"_target_": "Invertd",
|
84 |
+
"keys": "pred",
|
85 |
+
"transform": "@preprocessing",
|
86 |
+
"orig_keys": "image",
|
87 |
+
"meta_keys": "pred_meta_dict",
|
88 |
+
"nearest_interp": false,
|
89 |
+
"to_tensor": true
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"_target_": "AsDiscreted",
|
93 |
+
"keys": "pred",
|
94 |
+
"threshold": 0.5
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"_target_": "SaveImaged",
|
98 |
+
"keys": "pred",
|
99 |
+
"meta_keys": "pred_meta_dict",
|
100 |
+
"output_dir": "@output_dir"
|
101 |
+
}
|
102 |
+
]
|
103 |
+
},
|
104 |
+
"handlers": [
|
105 |
+
{
|
106 |
+
"_target_": "CheckpointLoader",
|
107 |
+
"load_path": "$@bundle_root + '/models/model.pt'",
|
108 |
+
"load_dict": {
|
109 |
+
"model": "@network"
|
110 |
+
}
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"_target_": "StatsHandler",
|
114 |
+
"iteration_log": false
|
115 |
+
}
|
116 |
+
],
|
117 |
+
"evaluator": {
|
118 |
+
"_target_": "SupervisedEvaluator",
|
119 |
+
"device": "@device",
|
120 |
+
"val_data_loader": "@dataloader",
|
121 |
+
"network": "@network",
|
122 |
+
"inferer": "@inferer",
|
123 |
+
"postprocessing": "@postprocessing",
|
124 |
+
"val_handlers": "@handlers",
|
125 |
+
"amp": true
|
126 |
+
},
|
127 |
+
"evaluating": [
|
128 |
+
"$setattr(torch.backends.cudnn, 'benchmark', True)",
|
129 |
+
"$@evaluator.run()"
|
130 |
+
]
|
131 |
+
}
|
configs/logging.conf
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[loggers]
|
2 |
+
keys=root
|
3 |
+
|
4 |
+
[handlers]
|
5 |
+
keys=consoleHandler
|
6 |
+
|
7 |
+
[formatters]
|
8 |
+
keys=fullFormatter
|
9 |
+
|
10 |
+
[logger_root]
|
11 |
+
level=INFO
|
12 |
+
handlers=consoleHandler
|
13 |
+
|
14 |
+
[handler_consoleHandler]
|
15 |
+
class=StreamHandler
|
16 |
+
level=INFO
|
17 |
+
formatter=fullFormatter
|
18 |
+
args=(sys.stdout,)
|
19 |
+
|
20 |
+
[formatter_fullFormatter]
|
21 |
+
format=%(asctime)s - %(name)s - %(levelname)s - %(message)s
|
configs/metadata.json
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
|
3 |
+
"version": "0.1.0",
|
4 |
+
"changelog": {
|
5 |
+
"0.1.0": "complete the model package"
|
6 |
+
},
|
7 |
+
"monai_version": "0.9.0",
|
8 |
+
"pytorch_version": "1.12.0",
|
9 |
+
"numpy_version": "1.21.2",
|
10 |
+
"optional_packages_version": {
|
11 |
+
"nibabel": "3.2.1",
|
12 |
+
"pytorch-ignite": "0.4.8"
|
13 |
+
},
|
14 |
+
"task": "Multimodal Brain Tumor segmentation",
|
15 |
+
"description": "A pre-trained model for volumetric (3D) segmentation of brain tumor subregions from multimodal MRIs based on BraTS 2018 data",
|
16 |
+
"authors": "MONAI team",
|
17 |
+
"copyright": "Copyright (c) MONAI Consortium",
|
18 |
+
"data_source": "https://www.med.upenn.edu/sbia/brats2018/data.html",
|
19 |
+
"data_type": "nibabel",
|
20 |
+
"image_classes": "4 channel data, T1c, T1, T2, FLAIR at 1x1x1 mm",
|
21 |
+
"label_classes": "3 channel data, channel 0 for Tumor core, channel 1 for Whole tumor, channel 2 for Enhancing tumor",
|
22 |
+
"pred_classes": "3 channels data, same as label_classes",
|
23 |
+
"eval_metrics": {
|
24 |
+
"val_mean_dice": 0.8518,
|
25 |
+
"val_mean_dice_tc": 0.8559,
|
26 |
+
"val_mean_dice_wt": 0.9026,
|
27 |
+
"val_mean_dice_et": 0.7905
|
28 |
+
},
|
29 |
+
"intended_use": "This is an example, not to be used for diagnostic purposes",
|
30 |
+
"references": [
|
31 |
+
"Myronenko, Andriy. '3D MRI brain tumor segmentation using autoencoder regularization.' International MICCAI Brainlesion Workshop. Springer, Cham, 2018. https://arxiv.org/abs/1810.11654"
|
32 |
+
],
|
33 |
+
"network_data_format": {
|
34 |
+
"inputs": {
|
35 |
+
"image": {
|
36 |
+
"type": "image",
|
37 |
+
"format": "magnitude",
|
38 |
+
"modality": "MR",
|
39 |
+
"num_channels": 4,
|
40 |
+
"spatial_shape": [
|
41 |
+
"8*n",
|
42 |
+
"8*n",
|
43 |
+
"8*n"
|
44 |
+
],
|
45 |
+
"dtype": "float32",
|
46 |
+
"value_range": [
|
47 |
+
0,
|
48 |
+
1
|
49 |
+
],
|
50 |
+
"is_patch_data": true,
|
51 |
+
"channel_def": {
|
52 |
+
"0": "image"
|
53 |
+
}
|
54 |
+
}
|
55 |
+
},
|
56 |
+
"outputs": {
|
57 |
+
"pred": {
|
58 |
+
"type": "image",
|
59 |
+
"format": "segmentation",
|
60 |
+
"num_channels": 3,
|
61 |
+
"spatial_shape": [
|
62 |
+
"8*n",
|
63 |
+
"8*n",
|
64 |
+
"8*n"
|
65 |
+
],
|
66 |
+
"dtype": "float32",
|
67 |
+
"value_range": [
|
68 |
+
0,
|
69 |
+
1
|
70 |
+
],
|
71 |
+
"is_patch_data": true,
|
72 |
+
"channel_def": {
|
73 |
+
"0": "background",
|
74 |
+
"1": "spleen"
|
75 |
+
}
|
76 |
+
}
|
77 |
+
}
|
78 |
+
}
|
79 |
+
}
|
configs/multi_gpu_train.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"device": "$torch.device(f'cuda:{dist.get_rank()}')",
|
3 |
+
"network": {
|
4 |
+
"_target_": "torch.nn.parallel.DistributedDataParallel",
|
5 |
+
"module": "$@network_def.to(@device)",
|
6 |
+
"device_ids": [
|
7 |
+
"@device"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
"train#sampler": {
|
11 |
+
"_target_": "DistributedSampler",
|
12 |
+
"dataset": "@train#dataset",
|
13 |
+
"even_divisible": true,
|
14 |
+
"shuffle": true
|
15 |
+
},
|
16 |
+
"train#dataloader#sampler": "@train#sampler",
|
17 |
+
"train#dataloader#shuffle": false,
|
18 |
+
"train#trainer#train_handlers": "$@train#handlers[: -2 if dist.get_rank() > 0 else None]",
|
19 |
+
"validate#sampler": {
|
20 |
+
"_target_": "DistributedSampler",
|
21 |
+
"dataset": "@validate#dataset",
|
22 |
+
"even_divisible": false,
|
23 |
+
"shuffle": false
|
24 |
+
},
|
25 |
+
"validate#dataloader#sampler": "@validate#sampler",
|
26 |
+
"validate#evaluator#val_handlers": "$None if dist.get_rank() > 0 else @validate#handlers",
|
27 |
+
"training": [
|
28 |
+
"$import torch.distributed as dist",
|
29 |
+
"$dist.init_process_group(backend='nccl')",
|
30 |
+
"$torch.cuda.set_device(@device)",
|
31 |
+
"$monai.utils.set_determinism(seed=123)",
|
32 |
+
"$setattr(torch.backends.cudnn, 'benchmark', True)",
|
33 |
+
"$@train#trainer.run()",
|
34 |
+
"$dist.destroy_process_group()"
|
35 |
+
]
|
36 |
+
}
|
configs/train.json
ADDED
@@ -0,0 +1,335 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"imports": [
|
3 |
+
"$import glob",
|
4 |
+
"$import os"
|
5 |
+
],
|
6 |
+
"bundle_root": "/workspace/brats_mri_segmentation",
|
7 |
+
"ckpt_dir": "$@bundle_root + '/models'",
|
8 |
+
"output_dir": "$@bundle_root + '/eval'",
|
9 |
+
"data_list_file_path": "$@bundle_root + '/configs/datalist.json'",
|
10 |
+
"data_file_base_dir": "/workspace/data/medical/brats2018challenge",
|
11 |
+
"train_datalist": "$monai.data.load_decathlon_datalist(@data_list_file_path, data_list_key='training', base_dir=@data_file_base_dir)",
|
12 |
+
"val_datalist": "$monai.data.load_decathlon_datalist(@data_list_file_path, data_list_key='validation', base_dir=@data_file_base_dir)",
|
13 |
+
"device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
|
14 |
+
"epochs": 300,
|
15 |
+
"num_interval_per_valid": 1,
|
16 |
+
"learning_rate": 0.0001,
|
17 |
+
"amp": true,
|
18 |
+
"network_def": {
|
19 |
+
"_target_": "SegResNet",
|
20 |
+
"blocks_down": [
|
21 |
+
1,
|
22 |
+
2,
|
23 |
+
2,
|
24 |
+
4
|
25 |
+
],
|
26 |
+
"blocks_up": [
|
27 |
+
1,
|
28 |
+
1,
|
29 |
+
1
|
30 |
+
],
|
31 |
+
"init_filters": 16,
|
32 |
+
"in_channels": 4,
|
33 |
+
"out_channels": 3,
|
34 |
+
"dropout_prob": 0.2
|
35 |
+
},
|
36 |
+
"network": "$@network_def.to(@device)",
|
37 |
+
"loss": {
|
38 |
+
"_target_": "DiceLoss",
|
39 |
+
"smooth_nr": 0,
|
40 |
+
"smooth_dr": 1e-05,
|
41 |
+
"squared_pred": true,
|
42 |
+
"to_onehot_y": false,
|
43 |
+
"sigmoid": true
|
44 |
+
},
|
45 |
+
"optimizer": {
|
46 |
+
"_target_": "torch.optim.Adam",
|
47 |
+
"params": "$@network.parameters()",
|
48 |
+
"lr": "@learning_rate",
|
49 |
+
"weight_decay": 1e-05
|
50 |
+
},
|
51 |
+
"lr_scheduler": {
|
52 |
+
"_target_": "torch.optim.lr_scheduler.CosineAnnealingLR",
|
53 |
+
"optimizer": "@optimizer",
|
54 |
+
"T_max": "@epochs"
|
55 |
+
},
|
56 |
+
"train": {
|
57 |
+
"preprocessing_transforms": [
|
58 |
+
{
|
59 |
+
"_target_": "LoadImaged",
|
60 |
+
"keys": [
|
61 |
+
"image",
|
62 |
+
"label"
|
63 |
+
]
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"_target_": "ConvertToMultiChannelBasedOnBratsClassesd",
|
67 |
+
"keys": "label"
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"_target_": "NormalizeIntensityd",
|
71 |
+
"keys": "image",
|
72 |
+
"nonzero": true,
|
73 |
+
"channel_wise": true
|
74 |
+
}
|
75 |
+
],
|
76 |
+
"random_transforms": [
|
77 |
+
{
|
78 |
+
"_target_": "RandSpatialCropd",
|
79 |
+
"keys": [
|
80 |
+
"image",
|
81 |
+
"label"
|
82 |
+
],
|
83 |
+
"roi_size": [
|
84 |
+
224,
|
85 |
+
224,
|
86 |
+
144
|
87 |
+
],
|
88 |
+
"random_size": false
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"_target_": "RandFlipd",
|
92 |
+
"keys": [
|
93 |
+
"image",
|
94 |
+
"label"
|
95 |
+
],
|
96 |
+
"prob": 0.5,
|
97 |
+
"spatial_axis": 0
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"_target_": "RandFlipd",
|
101 |
+
"keys": [
|
102 |
+
"image",
|
103 |
+
"label"
|
104 |
+
],
|
105 |
+
"prob": 0.5,
|
106 |
+
"spatial_axis": 1
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"_target_": "RandFlipd",
|
110 |
+
"keys": [
|
111 |
+
"image",
|
112 |
+
"label"
|
113 |
+
],
|
114 |
+
"prob": 0.5,
|
115 |
+
"spatial_axis": 2
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"_target_": "RandScaleIntensityd",
|
119 |
+
"keys": "image",
|
120 |
+
"factors": 0.1,
|
121 |
+
"prob": 1.0
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"_target_": "RandShiftIntensityd",
|
125 |
+
"keys": "image",
|
126 |
+
"offsets": 0.1,
|
127 |
+
"prob": 1.0
|
128 |
+
}
|
129 |
+
],
|
130 |
+
"final_transforms": [
|
131 |
+
{
|
132 |
+
"_target_": "ToTensord",
|
133 |
+
"keys": [
|
134 |
+
"image",
|
135 |
+
"label"
|
136 |
+
]
|
137 |
+
}
|
138 |
+
],
|
139 |
+
"preprocessing": {
|
140 |
+
"_target_": "Compose",
|
141 |
+
"transforms": "$@train#preprocessing_transforms + @train#random_transforms + @train#final_transforms"
|
142 |
+
},
|
143 |
+
"dataset": {
|
144 |
+
"_target_": "Dataset",
|
145 |
+
"data": "@train_datalist",
|
146 |
+
"transform": "@train#preprocessing"
|
147 |
+
},
|
148 |
+
"dataloader": {
|
149 |
+
"_target_": "DataLoader",
|
150 |
+
"dataset": "@train#dataset",
|
151 |
+
"batch_size": 1,
|
152 |
+
"shuffle": true,
|
153 |
+
"num_workers": 4
|
154 |
+
},
|
155 |
+
"inferer": {
|
156 |
+
"_target_": "SimpleInferer"
|
157 |
+
},
|
158 |
+
"postprocessing": {
|
159 |
+
"_target_": "Compose",
|
160 |
+
"transforms": [
|
161 |
+
{
|
162 |
+
"_target_": "Activationsd",
|
163 |
+
"keys": "pred",
|
164 |
+
"sigmoid": true
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"_target_": "AsDiscreted",
|
168 |
+
"keys": "pred",
|
169 |
+
"threshold": 0.5
|
170 |
+
}
|
171 |
+
]
|
172 |
+
},
|
173 |
+
"handlers": [
|
174 |
+
{
|
175 |
+
"_target_": "LrScheduleHandler",
|
176 |
+
"lr_scheduler": "@lr_scheduler",
|
177 |
+
"print_lr": true
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"_target_": "ValidationHandler",
|
181 |
+
"validator": "@validate#evaluator",
|
182 |
+
"epoch_level": true,
|
183 |
+
"interval": "@num_interval_per_valid"
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"_target_": "StatsHandler",
|
187 |
+
"tag_name": "train_loss",
|
188 |
+
"output_transform": "$monai.handlers.from_engine(['loss'], first=True)"
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"_target_": "TensorBoardStatsHandler",
|
192 |
+
"log_dir": "@output_dir",
|
193 |
+
"tag_name": "train_loss",
|
194 |
+
"output_transform": "$monai.handlers.from_engine(['loss'], first=True)"
|
195 |
+
}
|
196 |
+
],
|
197 |
+
"key_metric": {
|
198 |
+
"train_mean_dice": {
|
199 |
+
"_target_": "MeanDice",
|
200 |
+
"include_background": true,
|
201 |
+
"output_transform": "$monai.handlers.from_engine(['pred', 'label'])"
|
202 |
+
}
|
203 |
+
},
|
204 |
+
"trainer": {
|
205 |
+
"_target_": "SupervisedTrainer",
|
206 |
+
"max_epochs": "@epochs",
|
207 |
+
"device": "@device",
|
208 |
+
"train_data_loader": "@train#dataloader",
|
209 |
+
"network": "@network",
|
210 |
+
"loss_function": "@loss",
|
211 |
+
"optimizer": "@optimizer",
|
212 |
+
"inferer": "@train#inferer",
|
213 |
+
"postprocessing": "@train#postprocessing",
|
214 |
+
"key_train_metric": "@train#key_metric",
|
215 |
+
"train_handlers": "@train#handlers",
|
216 |
+
"amp": "@amp"
|
217 |
+
}
|
218 |
+
},
|
219 |
+
"validate": {
|
220 |
+
"preprocessing": {
|
221 |
+
"_target_": "Compose",
|
222 |
+
"transforms": "$@train#preprocessing_transforms + @train#final_transforms"
|
223 |
+
},
|
224 |
+
"dataset": {
|
225 |
+
"_target_": "Dataset",
|
226 |
+
"data": "@val_datalist",
|
227 |
+
"transform": "@validate#preprocessing"
|
228 |
+
},
|
229 |
+
"dataloader": {
|
230 |
+
"_target_": "DataLoader",
|
231 |
+
"dataset": "@validate#dataset",
|
232 |
+
"batch_size": 1,
|
233 |
+
"shuffle": false,
|
234 |
+
"num_workers": 4
|
235 |
+
},
|
236 |
+
"inferer": {
|
237 |
+
"_target_": "SlidingWindowInferer",
|
238 |
+
"roi_size": [
|
239 |
+
240,
|
240 |
+
240,
|
241 |
+
160
|
242 |
+
],
|
243 |
+
"sw_batch_size": 1,
|
244 |
+
"overlap": 0.5
|
245 |
+
},
|
246 |
+
"postprocessing": {
|
247 |
+
"_target_": "Compose",
|
248 |
+
"transforms": [
|
249 |
+
{
|
250 |
+
"_target_": "Activationsd",
|
251 |
+
"keys": "pred",
|
252 |
+
"sigmoid": true
|
253 |
+
},
|
254 |
+
{
|
255 |
+
"_target_": "AsDiscreted",
|
256 |
+
"keys": "pred",
|
257 |
+
"threshold": 0.5
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"_target_": "SplitChanneld",
|
261 |
+
"keys": [
|
262 |
+
"pred",
|
263 |
+
"label"
|
264 |
+
],
|
265 |
+
"output_postfixes": [
|
266 |
+
"tc",
|
267 |
+
"wt",
|
268 |
+
"et"
|
269 |
+
]
|
270 |
+
}
|
271 |
+
]
|
272 |
+
},
|
273 |
+
"handlers": [
|
274 |
+
{
|
275 |
+
"_target_": "StatsHandler",
|
276 |
+
"iteration_log": false
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"_target_": "TensorBoardStatsHandler",
|
280 |
+
"log_dir": "@output_dir",
|
281 |
+
"iteration_log": false
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"_target_": "CheckpointSaver",
|
285 |
+
"save_dir": "@ckpt_dir",
|
286 |
+
"save_dict": {
|
287 |
+
"model": "@network"
|
288 |
+
},
|
289 |
+
"save_key_metric": true,
|
290 |
+
"key_metric_filename": "model.pt"
|
291 |
+
}
|
292 |
+
],
|
293 |
+
"key_metric": {
|
294 |
+
"val_mean_dice": {
|
295 |
+
"_target_": "MeanDice",
|
296 |
+
"include_background": true,
|
297 |
+
"output_transform": "$monai.handlers.from_engine(['pred', 'label'])"
|
298 |
+
}
|
299 |
+
},
|
300 |
+
"additional_metrics": {
|
301 |
+
"val_mean_dice_tc": {
|
302 |
+
"_target_": "MeanDice",
|
303 |
+
"include_background": true,
|
304 |
+
"output_transform": "$monai.handlers.from_engine(['pred_tc', 'label_tc'])"
|
305 |
+
},
|
306 |
+
"val_mean_dice_wt": {
|
307 |
+
"_target_": "MeanDice",
|
308 |
+
"include_background": true,
|
309 |
+
"output_transform": "$monai.handlers.from_engine(['pred_wt', 'label_wt'])"
|
310 |
+
},
|
311 |
+
"val_mean_dice_et": {
|
312 |
+
"_target_": "MeanDice",
|
313 |
+
"include_background": true,
|
314 |
+
"output_transform": "$monai.handlers.from_engine(['pred_et', 'label_et'])"
|
315 |
+
}
|
316 |
+
},
|
317 |
+
"evaluator": {
|
318 |
+
"_target_": "SupervisedEvaluator",
|
319 |
+
"device": "@device",
|
320 |
+
"val_data_loader": "@validate#dataloader",
|
321 |
+
"network": "@network",
|
322 |
+
"inferer": "@validate#inferer",
|
323 |
+
"postprocessing": "@validate#postprocessing",
|
324 |
+
"key_val_metric": "@validate#key_metric",
|
325 |
+
"additional_metrics": "@validate#additional_metrics",
|
326 |
+
"val_handlers": "@validate#handlers",
|
327 |
+
"amp": "@amp"
|
328 |
+
}
|
329 |
+
},
|
330 |
+
"training": [
|
331 |
+
"$monai.utils.set_determinism(seed=123)",
|
332 |
+
"$setattr(torch.backends.cudnn, 'benchmark', True)",
|
333 |
+
"$@train#trainer.run()"
|
334 |
+
]
|
335 |
+
}
|
docs/README.md
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Model Overview
|
2 |
+
A pre-trained model for volumetric (3D) segmentation of brain tumor subregions from multimodal MRIs based on BraTS 2018 data. The whole pipeline is modified from [clara_pt_brain_mri_segmentation](https://catalog.ngc.nvidia.com/orgs/nvidia/teams/med/models/clara_pt_brain_mri_segmentation).
|
3 |
+
|
4 |
+
## Workflow
|
5 |
+
|
6 |
+
The model is trained to segment 3 nested subregions of primary brain tumors (gliomas): the "enhancing tumor" (ET), the "tumor core" (TC), the "whole tumor" (WT) based on 4 aligned input MRI scans (T1c, T1, T2, FLAIR).
|
7 |
+
- The ET is described by areas that show hyper intensity in T1c when compared to T1, but also when compared to "healthy" white matter in T1c.
|
8 |
+
- The TC describes the bulk of the tumor, which is what is typically resected. The TC entails the ET, as well as the necrotic (fluid-filled) and the non-enhancing (solid) parts of the tumor.
|
9 |
+
- The WT describes the complete extent of the disease, as it entails the TC and the peritumoral edema (ED), which is typically depicted by hyper-intense signal in FLAIR.
|
10 |
+
|
11 |
+
## Data
|
12 |
+
|
13 |
+
The training data is from the [Multimodal Brain Tumor Segmentation Challenge (BraTS) 2018](https://www.med.upenn.edu/sbia/brats2018/data.html).
|
14 |
+
|
15 |
+
- Target: 3 tumor subregions
|
16 |
+
- Task: Segmentation
|
17 |
+
- Modality: MRI
|
18 |
+
- Size: 285 3D volumes (4 channels each)
|
19 |
+
|
20 |
+
The provided labelled data was partitioned, based on our own split, into training (200 studies), validation (42 studies) and testing (43 studies) datasets.
|
21 |
+
|
22 |
+
Please run `scripts/prepare_datalist.py` to produce the data list. The command is like:
|
23 |
+
|
24 |
+
```
|
25 |
+
python scripts/prepare_datalist.py --path your-brats18-dataset-path
|
26 |
+
```
|
27 |
+
|
28 |
+
## Training configuration
|
29 |
+
|
30 |
+
This model utilized a similar approach described in 3D MRI brain tumor segmentation
|
31 |
+
using autoencoder regularization, which was a winning method in BraTS2018 [1]. The training was performed with the following:
|
32 |
+
|
33 |
+
- GPU: At least 16GB of GPU memory.
|
34 |
+
- Actual Model Input: 224 x 224 x 144
|
35 |
+
- AMP: True
|
36 |
+
- Optimizer: Adam
|
37 |
+
- Learning Rate: 1e-4
|
38 |
+
- Loss: DiceLoss
|
39 |
+
|
40 |
+
## Input
|
41 |
+
|
42 |
+
Input: 4 channel MRI (4 aligned MRIs T1c, T1, T2, FLAIR at 1x1x1 mm)
|
43 |
+
|
44 |
+
1. Normalizing to unit std with zero mean
|
45 |
+
2. Randomly cropping to (224, 224, 144)
|
46 |
+
3. Randomly spatial flipping
|
47 |
+
4. Randomly scaling and shifting intensity of the volume
|
48 |
+
|
49 |
+
## Output
|
50 |
+
|
51 |
+
Output: 3 channels
|
52 |
+
- Label 0: TC tumor subregion
|
53 |
+
- Label 1: WT tumor subregion
|
54 |
+
- Label 2: ET tumor subregion
|
55 |
+
|
56 |
+
## Model Performance
|
57 |
+
|
58 |
+
The achieved Dice scores on the validation data are:
|
59 |
+
- Tumor core (TC): 0.8559
|
60 |
+
- Whole tumor (WT): 0.9026
|
61 |
+
- Enhancing tumor (ET): 0.7905
|
62 |
+
- Average: 0.8518
|
63 |
+
|
64 |
+
## commands example
|
65 |
+
|
66 |
+
Execute training:
|
67 |
+
|
68 |
+
```
|
69 |
+
python -m monai.bundle run training --meta_file configs/metadata.json --config_file configs/train.json --logging_file configs/logging.conf
|
70 |
+
```
|
71 |
+
|
72 |
+
Override the `train` config to execute multi-GPU training:
|
73 |
+
|
74 |
+
```
|
75 |
+
torchrun --standalone --nnodes=1 --nproc_per_node=8 -m monai.bundle run training --meta_file configs/metadata.json --config_file "['configs/train.json','configs/multi_gpu_train.json']" --logging_file configs/logging.conf
|
76 |
+
```
|
77 |
+
|
78 |
+
Override the `train` config to execute evaluation with the trained model:
|
79 |
+
|
80 |
+
```
|
81 |
+
python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file "['configs/train.json','configs/evaluate.json']" --logging_file configs/logging.conf
|
82 |
+
```
|
83 |
+
|
84 |
+
Execute inference:
|
85 |
+
|
86 |
+
```
|
87 |
+
python -m monai.bundle run evaluating --meta_file configs/metadata.json --config_file configs/inference.json --logging_file configs/logging.conf
|
88 |
+
```
|
89 |
+
|
90 |
+
# Disclaimer
|
91 |
+
|
92 |
+
This is an example, not to be used for diagnostic purposes.
|
93 |
+
|
94 |
+
# References
|
95 |
+
|
96 |
+
[1] Myronenko, Andriy. "3D MRI brain tumor segmentation using autoencoder regularization." International MICCAI Brainlesion Workshop. Springer, Cham, 2018. https://arxiv.org/abs/1810.11654.
|
docs/license.txt
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Third Party Licenses
|
2 |
+
-----------------------------------------------------------------------
|
3 |
+
|
4 |
+
/*********************************************************************/
|
5 |
+
i. Multimodal Brain Tumor Segmentation Challenge 2018
|
6 |
+
https://www.med.upenn.edu/sbia/brats2018/data.html
|
7 |
+
/*********************************************************************/
|
8 |
+
|
9 |
+
Data Usage Agreement / Citations
|
10 |
+
|
11 |
+
You are free to use and/or refer to the BraTS datasets in your own
|
12 |
+
research, provided that you always cite the following two manuscripts:
|
13 |
+
|
14 |
+
[1] Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby
|
15 |
+
[J, Burren Y, Porz N, Slotboom J, Wiest R, Lanczi L, Gerstner E, Weber
|
16 |
+
[MA, Arbel T, Avants BB, Ayache N, Buendia P, Collins DL, Cordier N,
|
17 |
+
[Corso JJ, Criminisi A, Das T, Delingette H, Demiralp Γ, Durst CR,
|
18 |
+
[Dojat M, Doyle S, Festa J, Forbes F, Geremia E, Glocker B, Golland P,
|
19 |
+
[Guo X, Hamamci A, Iftekharuddin KM, Jena R, John NM, Konukoglu E,
|
20 |
+
[Lashkari D, Mariz JA, Meier R, Pereira S, Precup D, Price SJ, Raviv
|
21 |
+
[TR, Reza SM, Ryan M, Sarikaya D, Schwartz L, Shin HC, Shotton J,
|
22 |
+
[Silva CA, Sousa N, Subbanna NK, Szekely G, Taylor TJ, Thomas OM,
|
23 |
+
[Tustison NJ, Unal G, Vasseur F, Wintermark M, Ye DH, Zhao L, Zhao B,
|
24 |
+
[Zikic D, Prastawa M, Reyes M, Van Leemput K. "The Multimodal Brain
|
25 |
+
[Tumor Image Segmentation Benchmark (BRATS)", IEEE Transactions on
|
26 |
+
[Medical Imaging 34(10), 1993-2024 (2015) DOI:
|
27 |
+
[10.1109/TMI.2014.2377694
|
28 |
+
|
29 |
+
[2] Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby JS,
|
30 |
+
[Freymann JB, Farahani K, Davatzikos C. "Advancing The Cancer Genome
|
31 |
+
[Atlas glioma MRI collections with expert segmentation labels and
|
32 |
+
[radiomic features", Nature Scientific Data, 4:170117 (2017) DOI:
|
33 |
+
[10.1038/sdata.2017.117
|
34 |
+
|
35 |
+
In addition, if there are no restrictions imposed from the
|
36 |
+
journal/conference you submit your paper about citing "Data
|
37 |
+
Citations", please be specific and also cite the following:
|
38 |
+
|
39 |
+
[3] Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby J,
|
40 |
+
[Freymann J, Farahani K, Davatzikos C. "Segmentation Labels and
|
41 |
+
[Radiomic Features for the Pre-operative Scans of the TCGA-GBM
|
42 |
+
[collection", The Cancer Imaging Archive, 2017. DOI:
|
43 |
+
[10.7937/K9/TCIA.2017.KLXWJJ1Q
|
44 |
+
|
45 |
+
[4] Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby J,
|
46 |
+
[Freymann J, Farahani K, Davatzikos C. "Segmentation Labels and
|
47 |
+
[Radiomic Features for the Pre-operative Scans of the TCGA-LGG
|
48 |
+
[collection", The Cancer Imaging Archive, 2017. DOI:
|
49 |
+
[10.7937/K9/TCIA.2017.GJQ7R0EF
|
models/model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:860ccb3f1c21c99d0410ad8a1ac4ef6b8fab60cec0a503b0ba42675741a750ae
|
3 |
+
size 18840620
|
models/model.ts
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:729980a0bd9347bf2397701eb329e12517918dc282a2d09c40458e95b24ceed9
|
3 |
+
size 18911784
|
scripts/prepare_datalist.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import glob
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
|
6 |
+
import monai
|
7 |
+
from sklearn.model_selection import train_test_split
|
8 |
+
|
9 |
+
|
10 |
+
def produce_sample_dict(line: str):
|
11 |
+
names = os.listdir(line)
|
12 |
+
seg, t1ce, t1, t2, flair = [], [], [], [], []
|
13 |
+
for name in names:
|
14 |
+
name = os.path.join(line, name)
|
15 |
+
if "_seg.nii" in name:
|
16 |
+
seg.append(name)
|
17 |
+
elif "_t1ce.nii" in name:
|
18 |
+
t1ce.append(name)
|
19 |
+
elif "_t1.nii" in name:
|
20 |
+
t1.append(name)
|
21 |
+
elif "_t2.nii" in name:
|
22 |
+
t2.append(name)
|
23 |
+
elif "_flair.nii" in name:
|
24 |
+
flair.append(name)
|
25 |
+
|
26 |
+
return {"label": seg[0], "image": t1ce + t1 + t2 + flair}
|
27 |
+
|
28 |
+
|
29 |
+
def produce_datalist(dataset_dir: str):
|
30 |
+
"""
|
31 |
+
This function is used to split the dataset.
|
32 |
+
It will produce 200 samples for training, and the other samples are divided equally
|
33 |
+
into val and test sets.
|
34 |
+
"""
|
35 |
+
|
36 |
+
samples = sorted(glob.glob(os.path.join(dataset_dir, "*", "*"), recursive=True))
|
37 |
+
datalist = []
|
38 |
+
for line in samples:
|
39 |
+
datalist.append(produce_sample_dict(line))
|
40 |
+
train_list, other_list = train_test_split(datalist, train_size=200)
|
41 |
+
val_list, test_list = train_test_split(other_list, train_size=0.5)
|
42 |
+
|
43 |
+
return {"training": train_list, "validation": val_list, "testing": test_list}
|
44 |
+
|
45 |
+
|
46 |
+
def main(args):
|
47 |
+
"""
|
48 |
+
split the dataset and output the data list into a json file.
|
49 |
+
"""
|
50 |
+
data_file_base_dir = os.path.join(args.path, "training")
|
51 |
+
output_json = args.output
|
52 |
+
# produce deterministic data splits
|
53 |
+
monai.utils.set_determinism(seed=123)
|
54 |
+
datalist = produce_datalist(dataset_dir=data_file_base_dir)
|
55 |
+
with open(output_json, "w") as f:
|
56 |
+
json.dump(datalist, f)
|
57 |
+
|
58 |
+
|
59 |
+
if __name__ == "__main__":
|
60 |
+
|
61 |
+
parser = argparse.ArgumentParser(description="")
|
62 |
+
parser.add_argument(
|
63 |
+
"--path",
|
64 |
+
type=str,
|
65 |
+
default="/workspace/data/medical/brats2018challenge",
|
66 |
+
help="root path of brats 2018 dataset.",
|
67 |
+
)
|
68 |
+
parser.add_argument(
|
69 |
+
"--output", type=str, default="configs/datalist.json", help="relative path of output datalist json file."
|
70 |
+
)
|
71 |
+
args = parser.parse_args()
|
72 |
+
|
73 |
+
main(args)
|