monai
medical
katielink commited on
Commit
fb61f80
·
1 Parent(s): b243c9e

update ONNX-TensorRT descriptions

Browse files
Files changed (3) hide show
  1. README.md +2 -2
  2. configs/metadata.json +3 -2
  3. docs/README.md +2 -2
README.md CHANGED
@@ -72,7 +72,7 @@ Please refer to https://pytorch.org/docs/stable/notes/randomness.html#reproducib
72
  ![A graph showing the validation mean dice over 300 epochs](https://developer.download.nvidia.com/assets/Clara/Images/monai_brats_mri_segmentation_val.png)
73
 
74
  #### TensorRT speedup
75
- The `brats_mri_segmentation` bundle supports the TensorRT acceleration through the ONNX-TensorRT way. The table below shows the speedup ratios benchmarked on an A100 80G GPU.
76
 
77
  | method | torch_fp32(ms) | torch_amp(ms) | trt_fp32(ms) | trt_fp16(ms) | speedup amp | speedup fp32 | speedup fp16 | amp vs fp16|
78
  | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
@@ -87,7 +87,7 @@ Where:
87
  - `speedup amp`, `speedup fp32` and `speedup fp16` are the speedup ratios of corresponding models versus the PyTorch float32 model
88
  - `amp vs fp16` is the speedup ratio between the PyTorch amp model and the TensorRT float16 based model.
89
 
90
- Currently, this model can only be accelerated through the ONNX-TensorRT way and the Torch-TensorRT way will come soon.
91
 
92
  This result is benchmarked under:
93
  - TensorRT: 8.5.3+cuda11.8
 
72
  ![A graph showing the validation mean dice over 300 epochs](https://developer.download.nvidia.com/assets/Clara/Images/monai_brats_mri_segmentation_val.png)
73
 
74
  #### TensorRT speedup
75
+ The `brats_mri_segmentation` bundle supports acceleration with TensorRT through the ONNX-TensorRT method. The table below displays the speedup ratios observed on an A100 80G GPU.
76
 
77
  | method | torch_fp32(ms) | torch_amp(ms) | trt_fp32(ms) | trt_fp16(ms) | speedup amp | speedup fp32 | speedup fp16 | amp vs fp16|
78
  | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 
87
  - `speedup amp`, `speedup fp32` and `speedup fp16` are the speedup ratios of corresponding models versus the PyTorch float32 model
88
  - `amp vs fp16` is the speedup ratio between the PyTorch amp model and the TensorRT float16 based model.
89
 
90
+ Currently, the only available method to accelerate this model is through ONNX-TensorRT. However, the Torch-TensorRT method is under development and will be available in the near future.
91
 
92
  This result is benchmarked under:
93
  - TensorRT: 8.5.3+cuda11.8
configs/metadata.json CHANGED
@@ -1,7 +1,8 @@
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
3
- "version": "0.4.4",
4
  "changelog": {
 
5
  "0.4.4": "update error links",
6
  "0.4.3": "add the ONNX-TensorRT way of model conversion",
7
  "0.4.2": "fix mgpu finalize issue",
@@ -22,7 +23,7 @@
22
  "0.1.1": "update for MetaTensor",
23
  "0.1.0": "complete the model package"
24
  },
25
- "monai_version": "1.2.0rc4",
26
  "pytorch_version": "1.13.1",
27
  "numpy_version": "1.22.2",
28
  "optional_packages_version": {
 
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
3
+ "version": "0.4.5",
4
  "changelog": {
5
+ "0.4.5": "update ONNX-TensorRT descriptions",
6
  "0.4.4": "update error links",
7
  "0.4.3": "add the ONNX-TensorRT way of model conversion",
8
  "0.4.2": "fix mgpu finalize issue",
 
23
  "0.1.1": "update for MetaTensor",
24
  "0.1.0": "complete the model package"
25
  },
26
+ "monai_version": "1.2.0rc5",
27
  "pytorch_version": "1.13.1",
28
  "numpy_version": "1.22.2",
29
  "optional_packages_version": {
docs/README.md CHANGED
@@ -65,7 +65,7 @@ Please refer to https://pytorch.org/docs/stable/notes/randomness.html#reproducib
65
  ![A graph showing the validation mean dice over 300 epochs](https://developer.download.nvidia.com/assets/Clara/Images/monai_brats_mri_segmentation_val.png)
66
 
67
  #### TensorRT speedup
68
- The `brats_mri_segmentation` bundle supports the TensorRT acceleration through the ONNX-TensorRT way. The table below shows the speedup ratios benchmarked on an A100 80G GPU.
69
 
70
  | method | torch_fp32(ms) | torch_amp(ms) | trt_fp32(ms) | trt_fp16(ms) | speedup amp | speedup fp32 | speedup fp16 | amp vs fp16|
71
  | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
@@ -80,7 +80,7 @@ Where:
80
  - `speedup amp`, `speedup fp32` and `speedup fp16` are the speedup ratios of corresponding models versus the PyTorch float32 model
81
  - `amp vs fp16` is the speedup ratio between the PyTorch amp model and the TensorRT float16 based model.
82
 
83
- Currently, this model can only be accelerated through the ONNX-TensorRT way and the Torch-TensorRT way will come soon.
84
 
85
  This result is benchmarked under:
86
  - TensorRT: 8.5.3+cuda11.8
 
65
  ![A graph showing the validation mean dice over 300 epochs](https://developer.download.nvidia.com/assets/Clara/Images/monai_brats_mri_segmentation_val.png)
66
 
67
  #### TensorRT speedup
68
+ The `brats_mri_segmentation` bundle supports acceleration with TensorRT through the ONNX-TensorRT method. The table below displays the speedup ratios observed on an A100 80G GPU.
69
 
70
  | method | torch_fp32(ms) | torch_amp(ms) | trt_fp32(ms) | trt_fp16(ms) | speedup amp | speedup fp32 | speedup fp16 | amp vs fp16|
71
  | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 
80
  - `speedup amp`, `speedup fp32` and `speedup fp16` are the speedup ratios of corresponding models versus the PyTorch float32 model
81
  - `amp vs fp16` is the speedup ratio between the PyTorch amp model and the TensorRT float16 based model.
82
 
83
+ Currently, the only available method to accelerate this model is through ONNX-TensorRT. However, the Torch-TensorRT method is under development and will be available in the near future.
84
 
85
  This result is benchmarked under:
86
  - TensorRT: 8.5.3+cuda11.8