monai
medical
katielink commited on
Commit
e02a92e
·
1 Parent(s): 9b64c65

add the command of executing inference with TensorRT models

Browse files
Files changed (4) hide show
  1. README.md +15 -8
  2. configs/inference_trt.json +10 -0
  3. configs/metadata.json +2 -1
  4. docs/README.md +15 -8
README.md CHANGED
@@ -75,13 +75,14 @@ Please notice that the benchmark results are tested on one WSI image since the i
75
  | end2end |224.97 | 223.50 | 222.65 | 224.03 | 1.01 | 1.01 | 1.00 | 1.00 |
76
 
77
  This result is benchmarked under:
78
- - TensorRT: 8.5.3+cuda11.8
79
- - Torch-TensorRT Version: 1.4.0
80
- - CPU Architecture: x86-64
81
- - OS: ubuntu 20.04
82
- - Python version:3.8.10
83
- - CUDA version: 11.8
84
- - GPU models and configuration: A100 80G
 
85
 
86
  ## MONAI Bundle Commands
87
 
@@ -121,12 +122,18 @@ cd scripts && source evaluate_froc.sh
121
  python -m monai.bundle ckpt_export network_def --filepath models/model.ts --ckpt_file models/model.pt --meta_file configs/metadata.json --config_file configs/inference.json
122
  ```
123
 
124
- #### Export checkpoint to TensorRT based models with fp32 or fp16 precision:
125
 
126
  ```
127
  python -m monai.bundle trt_export --net_id network_def --filepath models/model_trt.ts --ckpt_file models/model.pt --meta_file configs/metadata.json --config_file configs/inference.json --precision <fp32/fp16> --dynamic_batchsize "[1, 400, 600]"
128
  ```
129
 
 
 
 
 
 
 
130
  # References
131
 
132
  [1] He, Kaiming, et al, "Deep Residual Learning for Image Recognition." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778. 2016. <https://arxiv.org/pdf/1512.03385.pdf>
 
75
  | end2end |224.97 | 223.50 | 222.65 | 224.03 | 1.01 | 1.01 | 1.00 | 1.00 |
76
 
77
  This result is benchmarked under:
78
+
79
+ - TensorRT: 8.5.3+cuda11.8
80
+ - Torch-TensorRT Version: 1.4.0
81
+ - CPU Architecture: x86-64
82
+ - OS: ubuntu 20.04
83
+ - Python version:3.8.10
84
+ - CUDA version: 11.8
85
+ - GPU models and configuration: A100 80G
86
 
87
  ## MONAI Bundle Commands
88
 
 
122
  python -m monai.bundle ckpt_export network_def --filepath models/model.ts --ckpt_file models/model.pt --meta_file configs/metadata.json --config_file configs/inference.json
123
  ```
124
 
125
+ #### Export checkpoint to TensorRT based models with fp32 or fp16 precision
126
 
127
  ```
128
  python -m monai.bundle trt_export --net_id network_def --filepath models/model_trt.ts --ckpt_file models/model.pt --meta_file configs/metadata.json --config_file configs/inference.json --precision <fp32/fp16> --dynamic_batchsize "[1, 400, 600]"
129
  ```
130
 
131
+ #### Execute inference with the TensorRT model
132
+
133
+ ```
134
+ python -m monai.bundle run --config_file "['configs/inference.json', 'configs/inference_trt.json']"
135
+ ```
136
+
137
  # References
138
 
139
  [1] He, Kaiming, et al, "Deep Residual Learning for Image Recognition." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778. 2016. <https://arxiv.org/pdf/1512.03385.pdf>
configs/inference_trt.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "imports": [
3
+ "$import glob",
4
+ "$import os",
5
+ "$import torch_tensorrt"
6
+ ],
7
+ "handlers#0#_disabled_": true,
8
+ "network_def": "$torch.jit.load(@bundle_root + '/models/model_trt.ts')",
9
+ "evaluator#amp": false
10
+ }
configs/metadata.json CHANGED
@@ -1,7 +1,8 @@
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
3
- "version": "0.4.9",
4
  "changelog": {
 
5
  "0.4.9": "adapt to BundleWorkflow interface",
6
  "0.4.8": "update the readme file with TensorRT convert",
7
  "0.4.7": "add name tag",
 
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
3
+ "version": "0.5.0",
4
  "changelog": {
5
+ "0.5.0": "add the command of executing inference with TensorRT models",
6
  "0.4.9": "adapt to BundleWorkflow interface",
7
  "0.4.8": "update the readme file with TensorRT convert",
8
  "0.4.7": "add name tag",
docs/README.md CHANGED
@@ -68,13 +68,14 @@ Please notice that the benchmark results are tested on one WSI image since the i
68
  | end2end |224.97 | 223.50 | 222.65 | 224.03 | 1.01 | 1.01 | 1.00 | 1.00 |
69
 
70
  This result is benchmarked under:
71
- - TensorRT: 8.5.3+cuda11.8
72
- - Torch-TensorRT Version: 1.4.0
73
- - CPU Architecture: x86-64
74
- - OS: ubuntu 20.04
75
- - Python version:3.8.10
76
- - CUDA version: 11.8
77
- - GPU models and configuration: A100 80G
 
78
 
79
  ## MONAI Bundle Commands
80
 
@@ -114,12 +115,18 @@ cd scripts && source evaluate_froc.sh
114
  python -m monai.bundle ckpt_export network_def --filepath models/model.ts --ckpt_file models/model.pt --meta_file configs/metadata.json --config_file configs/inference.json
115
  ```
116
 
117
- #### Export checkpoint to TensorRT based models with fp32 or fp16 precision:
118
 
119
  ```
120
  python -m monai.bundle trt_export --net_id network_def --filepath models/model_trt.ts --ckpt_file models/model.pt --meta_file configs/metadata.json --config_file configs/inference.json --precision <fp32/fp16> --dynamic_batchsize "[1, 400, 600]"
121
  ```
122
 
 
 
 
 
 
 
123
  # References
124
 
125
  [1] He, Kaiming, et al, "Deep Residual Learning for Image Recognition." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778. 2016. <https://arxiv.org/pdf/1512.03385.pdf>
 
68
  | end2end |224.97 | 223.50 | 222.65 | 224.03 | 1.01 | 1.01 | 1.00 | 1.00 |
69
 
70
  This result is benchmarked under:
71
+
72
+ - TensorRT: 8.5.3+cuda11.8
73
+ - Torch-TensorRT Version: 1.4.0
74
+ - CPU Architecture: x86-64
75
+ - OS: ubuntu 20.04
76
+ - Python version:3.8.10
77
+ - CUDA version: 11.8
78
+ - GPU models and configuration: A100 80G
79
 
80
  ## MONAI Bundle Commands
81
 
 
115
  python -m monai.bundle ckpt_export network_def --filepath models/model.ts --ckpt_file models/model.pt --meta_file configs/metadata.json --config_file configs/inference.json
116
  ```
117
 
118
+ #### Export checkpoint to TensorRT based models with fp32 or fp16 precision
119
 
120
  ```
121
  python -m monai.bundle trt_export --net_id network_def --filepath models/model_trt.ts --ckpt_file models/model.pt --meta_file configs/metadata.json --config_file configs/inference.json --precision <fp32/fp16> --dynamic_batchsize "[1, 400, 600]"
122
  ```
123
 
124
+ #### Execute inference with the TensorRT model
125
+
126
+ ```
127
+ python -m monai.bundle run --config_file "['configs/inference.json', 'configs/inference_trt.json']"
128
+ ```
129
+
130
  # References
131
 
132
  [1] He, Kaiming, et al, "Deep Residual Learning for Image Recognition." In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778. 2016. <https://arxiv.org/pdf/1512.03385.pdf>